python 的blaze库_在PyTorch中实现的BlazeFace人脸检测器模型

本文介绍了BlazeFace,一个来自Google Research的轻量级面部检测器,并展示了如何将预训练的TFLite模型转换为PyTorch使用。BlazeFace不仅提供边界框,还预测6个关键点。请注意,这个预训练模型适用于前置摄像头,可能无法检测较小的面部,主要针对自拍场景。提供了转换和推理的Notebooks以及用于测试的图像。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

BlazeFace in Python

BlazeFace is a fast, light-weight face detector from Google Research. Read more, Paper on arXiv

A pretrained model is available as part of Google's MediaPipe framework.

Besides a bounding box, BlazeFace also predicts 6 keypoints for face landmarks (2x eyes, 2x ears, nose, mouth).

Because BlazeFace is designed for use on mobile devices, the pretrained model is in TFLite format. However, I wanted to use it from PyTorch and so I converted it.

NOTE: The MediaPipe model is slightly different from the model described in the BlazeFace paper. It uses depthwise convolutions with a 3x3 kernel, not 5x5. And it only uses "single" BlazeBlocks, not "double" ones.

The BlazePaper paper mentions that there are two versions of the model, one for the front-facing camera and one for the back-facing camera. This repo includes only the

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值