人脸检测论文:BlazeFace: Sub-millisecond Neural Face Detection on Mobile GPUs 及其Pytorch实现

在这里插入图片描述
论文链接:https://arxiv.org/pdf/1907.05047v1.pdf
PyTorch:https://github.com/shanglianlm0525/BlazeFace

1 概述

BlazeFace算法是作者在MobileNet-SSD目标检测框架下,改进了网络结构、anchor机制、替换NMS后处理,使算法在人脸检测任务中保持高精度的同时,在移动GPU推理量身定制的轻量级网络。

2 模型架构与设计

2-1 增大感受野

在深度可分离卷积(depthwise separable convolution)中,depthwise convolution部分(s2ck2s^2ck^2s

### EfficientAD 方法概述 EfficientAD 是一种用于高效视觉异常检测的技术,能够在毫秒级延迟下完成高精度的异常识别与定位[^1]。该方法的核心在于结合轻量化特征提取器和学生-教师框架,显著降低了计算复杂度的同时保持了较高的准确性。 #### 轻量化特征提取器 为了满足实时性需求,EfficientAD 提出了一个高效的特征提取器,可在现代 GPU 上以低于一毫秒的时间处理单张图像[^3]。这种设计使得系统具备极高的吞吐能力,达到每秒 600 张图像的处理速度[^2]。 #### 学生-教师框架 EfficientAD 利用了学生-教师机制来检测异常特征。具体而言,训练阶段中,学生网络被教导去预测由教师网络从正常(无异常)训练样本中提取的特征向量。当输入测试样本时,如果学生网络无法准确预测对应的特征,则表明可能存在异常。 此外,为了避免学生网络过度拟合并模仿教师的行为模式,EfficientAD 设计了一种特殊的训练损失函数。这一损失函数限制了学生在网络边界外复制教师的能力,从而有效提升了模型对于异常情况的敏感程度。 #### 复杂逻辑异常检测 除了简单的像素级别偏差之外,某些类型的异常可能涉及到更复杂的场景理解问题——例如物体排列顺序错误等全局上下文相关的情况。针对这类难题,EfficientAD 集成了一个可以全面解析整幅画面内容的自编码器组件。借助此模块的帮助,即使面对那些仅靠局部信息难以察觉的问题也能够得到妥善解决。 ```python import torch.nn as nn class StudentNetwork(nn.Module): def __init__(self, input_size, output_size): super(StudentNetwork, self).__init__() self.fc = nn.Linear(input_size, output_size) def forward(self, x): return self.fc(x) teacher_output = ... # Normal image features extracted by the teacher network. student_network = StudentNetwork(input_size=..., output_size=...) predicted_features = student_network(teacher_output) loss_function = CustomLossFunction() # Defined to prevent overfitting and mimicry beyond normal data range. training_loss = loss_function(predicted_features, teacher_output) ``` ### 性能表现 实验结果显示,在多个工业级异常检测数据集上的评测证明了 EfficientAD 的优越性能。不仅实现了亚两毫秒级别的响应时间以及高达六百帧/秒以上的实际运行速率,而且维持着较低误报率水平,因此非常适合部署于资源受限环境下的大规模生产线上使用案例之中。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

mingo_敏

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值