psasp 36节点单线图_图神经网络的背景

图神经网络的背景

  • 论文原文:A Comprehensive Survey on Graph Neural Networks

Sperduti 等人在 1997 年[13]首次将神经网络用于有向无环图,启发了 GNN 的早期研究。图神经网络的概念最初由 Gori 在 2005 年[14]提出,并由 Scarselli 在 2009 年[15]、Gallicchio 在 2010 年[16]详细阐述。这些早期研究关注的是循环图神经网络(RecGNN)。它们通过迭代地传播邻居信息直到达到稳定的固定点,来学习目标节点的表示。 这个过程在计算上是昂贵的,并且最近人们为克服这些挑战付出了更多的努力[17],[18]。

受到 CNN 在计算机视觉领域成功实践的启发,图数据的卷积概念被用于并行计算,这一重新定义的概念被许多方法采用,称为卷积图神经网络(ConvGNN)。ConvGNN 主要分为两类方法,基于频谱的方法和基于空间的方法。 Bruna 等人提出了基于频谱的 ConvGNN 的第一个重要研究。 (2013)[19],它开发了基于谱图理论的图卷积。从那时起,基于频谱的 ConvGNN 的改进、扩展和近似度不断提高[20],[21],[22],[23]。基于空间的 ConvGNNs的研究要比基于频谱的ConvGNNs早得多。 2009年,Micheli 等人 [24] 首先在继承从RecGNN 传递消息的思想的同时,通过结构上非递归的复合层解决了图的相互依赖性。但是,这项工作的重要性被忽略了。直到最近,出现了许多基于空间的 ConvGNN(例如[25],[26],[27])。

除了 RecGNN 和 ConvGNN,在过去的几年中,还开发了许多替代的GNN,包括图自动编码器(GAE)和时空图神经网络(STGNN)。这些学习框架可以建立在 RecGNN,ConvGNN 或其他用于图建模的神经体系结构上。

图神经网络 对比 网络嵌入 GNN 的研究与图嵌入或网络嵌入紧密相关,后者同样是吸引数据挖掘和机器学习社区的话题。

网络嵌入旨在将网络结点表示为低维向量表示,同时保留网络拓扑结构和结点内容信息,以便可以使用简单的现成机器学习算法(例如用于分类的支持向量机)执行后续的任务,例如分类、聚类、推荐。同时,GNN 是深度学习模型,旨在通过端到端的方式解决与图相关的任务。许多 GNN 明确提取高级表示。GNN 和网络嵌入的主要区别是,GNN 是一组为各种任务设计的神经网络模型,而网络嵌入涵盖了针对同一任务的各种方法。因此,GNN 可以通过图自动编码器框架来解决网络嵌入问题。另外,网络嵌入包含其他非深度学习方法,例如矩阵分解和随机游走。

图神经网络 对比 图核方法 图核是解决图分类问题的历史主导技术[36],[37],[38]。 这些方法利用核函数来测量图对之间的相似度,因此基于核的算法(如支持向量机)可用于图上的监督学习。 与 GNN 相似,图核可以通过映射函数将图或节点嵌入向量空间。 不同之处在于此映射函数是确定性的,而不是可学习的。 由于成对相似性计算,图核方法受到计算瓶颈的严重困扰。 一方面,GNN 基于提取的图表示直接执行图分类,因此比图核方法更有效。

b93f5b447caf4222200b74566d7fd5fe.png

027034b0f988cbcd68081758c63a99c3.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值