二维ising模型概率c语言_伊辛模型中平均场理论

本文探讨二维Ising模型在描述物质磁性中的应用,阐述了相变的概念及其因素。通过介绍哈密尔顿量和配分函数,详细解析了Weiss分子场理论,讨论了在不同磁场强度下系统的铁磁和顺磁状态,并总结了临界状态的条件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

837a9c8bc5bb26fdd432cc41c0c794d4.png

一、相变

  • : 具有均匀物理性质的热力学系统。如水固相、液相、气相。
  • 相变: 从一种相转变成另一种相。如冰融化成水是固-液相变,铁磁-顺磁相变,超导体-正常导体相变,几何相变(渗流),量子相变等。
  • 相变产生因素?

导致相变产生的物理量有:温度T、压强P等。这些物理量本质上影响的是①物质内部粒子间的相互作用 ②粒子自身的热运动。

  • 如何描述相?

1. 状态转换成能量。

哈密尔顿量
表示某一状态
下系统能量。

2. 能量转换成概率。即出现这一状态的概率,这就是玻尔兹曼分布。

为玻尔兹曼常数。

为配分函数(partition function). 所有状态下能量和,可看做是归一化函数。
为定值。

成反比。系统中粒子间对抗性越强,能量越高,相变概率高,该状态出现概率低。

成正比。

二、Ising model

2.1 哈密尔顿量 H

伊辛模型用于描述物质磁铁性模型。

39769c1890ce00ef2e919ce11e80dc58.png
一维伊辛模型

假设有

个粒子,每个粒子有两个自旋方向
分别表示向下和向上,系统共有
种状态。状态
下系统哈密尔顿量由两部分组成:
  • 相邻粒子对间作用。
    是正常数,表示粒子对之间的磁铁性,
    表示所有响铃自旋对。若
    同号能量小
    为负数。若
    异号对抗性大,能量大
    正数。
  • 外场对粒子作用。
    为沿
    方向的磁场。

2.2 配分函数 Z

表示所有可能状态之和。
配分函数
需要计算
个状态,随着
增加计算量呈指数增长。而且当维度扩展到高维空间时,这种计算方式就无法求解。有没有一种方法能够在任意维度下都是通用的,且计算更简单?平均场理论。

三、Weiss Molecular Filed Theory

3.1 分解Hamiltonian


将自旋取值用均值和波动表示,均值是整个系统粒子取值的期望,那么每个粒子不同的则是波动部分。根据上式, 粒子间的作用可以转化为:

将其代入
中,

其中
是对所有相邻粒子对求和,可以进一步表示为以下形式,
表示粒子
的邻居,所有的点都会计算两次所以系数为
。而求和只与
有关,因此
为邻居个数
,一维空间
,二维空间
,三维空间
.

继续对
进行简化:
原来的哈密尔顿量
需要对电子对之间作用
以及外场作用
分别求和。经过平均场变换过后,只需对
求和,无需考虑电子对之间的相互作用。
简而言之,用平均场代替所有其它粒子对该粒子的相互作用,粒子之间无需进行交互,所有粒子只与平均场交互,使得多体问题转变为单体问题。
3注:整个式子中m是未知的。

3.2 配分函数 Z

3.3 求解平均场M

表示整个系统的平均值,
表示粒子
的平均值,注:这里
不再是
而是粒子
实际计算出来的均值。

粒子
的平均值表示,所有状态下粒子
取值与其概率乘积总和。以下忽略下标
,粒子
的均值:
到这里好像不知道怎么进行化简了。而
与[1]式有相似的形式,少了一项
, 可以对
求导得到

从而

的化简形式取对数求导:

即可得到最终的

,形式特别优美
这个式子中右边也有
, 很难对方程直接求解,给定参数
可以通过画图的方式寻找两函数交点. 我们考虑
即没有外场作用的情况,这时方程求解有两种情况:
  • :有唯一解
    系统为顺磁态。
  • :有三个解
    以及
    时候系统为铁磁态。而
    时,系统中粒子不再与平均场交互,系统随机性很强不稳定,因此我们只考虑
    两种解。

上述我们可以看到,临界状态为

,即
一维空间
;二维空间

3.4 总结

根据上面的推导过程,给定参数,从而确定平均场

的值,进而计算出Hamiltonian和配分函数

通过平均场理论,

的计算大大简化了,并且可以适用于高维空间2D,3D等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值