一、相变
- 相: 具有均匀物理性质的热力学系统。如水固相、液相、气相。
- 相变: 从一种相转变成另一种相。如冰融化成水是固-液相变,铁磁-顺磁相变,超导体-正常导体相变,几何相变(渗流),量子相变等。
- 相变产生因素?
导致相变产生的物理量有:温度T、压强P等。这些物理量本质上影响的是①物质内部粒子间的相互作用 ②粒子自身的热运动。
1. 状态转换成能量。
![]()
哈密尔顿量
![]()
表示某一状态
![]()
下系统能量。
2. 能量转换成概率。即出现这一状态的概率,这就是玻尔兹曼分布。
![]()
为玻尔兹曼常数。
![]()
为配分函数(partition function). 所有状态下能量和,可看做是归一化函数。
![]()
为定值。
![]()
与
![]()
成反比。系统中粒子间对抗性越强,能量越高,相变概率高,该状态出现概率低。
![]()
与
![]()
成正比。
二、Ising model
2.1 哈密尔顿量 H
伊辛模型用于描述物质磁铁性模型。
一维伊辛模型
假设有
![]()
个粒子,每个粒子有两个自旋方向
![]()
分别表示向下和向上,系统共有
![]()
种状态。状态
![]()
下系统哈密尔顿量由两部分组成:
- 相邻粒子对间作用。
![]()
是正常数,表示粒子对之间的磁铁性,
![]()
表示所有响铃自旋对。若
![]()
同号能量小
![]()
为负数。若
![]()
异号对抗性大,能量大
![]()
正数。
- 外场对粒子作用。
![]()
为沿
![]()
方向的磁场。
2.2 配分函数 Z
![]()
表示所有可能状态之和。
配分函数
需要计算
个状态,随着
增加,
计算量呈指数增长。而且当维度扩展到高维空间时,这种计算方式就无法求解。有没有一种方法能够在任意维度下都是通用的,且计算更简单?平均场理论。
三、Weiss Molecular Filed Theory
3.1 分解Hamiltonian
将自旋取值用均值和波动表示,均值是整个系统粒子取值的期望,那么每个粒子不同的则是波动部分。根据上式,
粒子间的作用可以转化为:
将其代入
![]()
中,
其中
![]()
是对所有相邻粒子对求和,可以进一步表示为以下形式,
![]()
表示粒子
![]()
的邻居,所有的点都会计算两次所以系数为
![]()
。而求和只与
![]()
有关,因此
![]()
为邻居个数
![]()
,一维空间
![]()
,二维空间
![]()
,三维空间
![]()
.
继续对
![]()
进行简化:
![]()
原来的哈密尔顿量
![]()
需要对电子对之间作用
![]()
以及外场作用
![]()
分别求和。经过平均场变换过后,只需对
![]()
求和,无需考虑电子对之间的相互作用。
简而言之,用平均场代替所有其它粒子对该粒子的相互作用,粒子之间无需进行交互,所有粒子只与平均场交互,使得多体问题转变为单体问题。
![]()
3注:整个式子中m是未知的。
3.2 配分函数 Z
3.3 求解平均场M
![]()
表示整个系统的平均值,
![]()
表示粒子
![]()
的平均值,注:这里
![]()
不再是
![]()
而是粒子
![]()
实际计算出来的均值。
粒子
![]()
的平均值表示,所有状态下粒子
![]()
取值与其概率乘积总和。以下忽略下标
![]()
,粒子
![]()
的均值:
![]()
到这里好像不知道怎么进行化简了。而
![]()
与[1]式有相似的形式,少了一项
![]()
, 可以对
![]()
求导得到
从而
对
![]()
的化简形式取对数求导:
即可得到最终的
![]()
,形式特别优美
![]()
这个式子中右边也有
![]()
, 很难对方程直接求解,给定参数
![]()
可以通过画图的方式寻找两函数交点. 我们考虑
![]()
即没有外场作用的情况,这时方程求解有两种情况:
-
![]()
:有唯一解
![]()
系统为顺磁态。
-
![]()
:有三个解
![]()
以及
![]()
,
![]()
时候系统为铁磁态。而
![]()
时,系统中粒子不再与平均场交互,系统随机性很强不稳定,因此我们只考虑
![]()
两种解。
上述我们可以看到,临界状态为
![]()
,即
![]()
一维空间
![]()
;二维空间
![]()
;
3.4 总结
根据上面的推导过程,给定参数,从而确定平均场
![]()
的值,进而计算出Hamiltonian和配分函数
通过平均场理论,
![]()
与
![]()
的计算大大简化了,并且可以适用于高维空间2D,3D等。