二维ising模型概率c语言_【强化学习 104】Mean-field for Semi-supervised,也聊 Ising

本文介绍了Ising模型及其在半监督学习中的应用,探讨平均场方法和贝叶斯方法的联系,并通过MCMC解决Ising模型。文章解释了平均场理论如何用于解决计算难题,并将其应用于数据点的标签推断。
摘要由CSDN通过智能技术生成

592a5cb704fc4caf33d735a4f467309a.png

本文提出使用 Ising 模型的平均场论解法来解决半监督学习问题。

原文传送门

Wang, Fei, et al. "Semi-supervised mean fields." Artificial Intelligence and Statistics. 2007.

特色

这篇文章先介绍了 Ising 模型(这是一个很有趣的模型,记得本科电磁学课的小作业还写过 Ising 模型的模拟程序)。接下来这篇文章把半监督学习问题用 Ising 模型来建模,并且使用平均场方法(naive mean field approach)来解决。文章还指出,贝叶斯方法和该方法在本质上的联系;特别地,半监督学习问题的本质就是要利用数据标签在数据空间上的平滑特性,可以把数据空间建模为一个图(graph),这又和我们前面在研究的 spectral graph theory 有一定的联系。

过程

1. Ising 模型

考虑 N 个粒子,每个原子有一个自旋(spin),自旋是二值量子化的,只能够取向上或者向下两种情况,即

。这样,原子的自旋方向的状态(configuration)就有
种情形,记这样的状态为加粗的

那么系统究竟处于哪一种状态下呢?考虑这是一个热力学系统,系统会以一定的概率处于某一个状态下,根据热力学的知识,一个粒子可分辨系统处于不同状态的概念遵循玻尔兹曼分辨,即系统处于状态

的概率为
,其中 k 为玻尔兹曼常数,T 为系统当前的温度,E 为系统处于该状态时的能量,Z 为配分函数,也可以理解它为归一化系数;在这里可以认为 kT=1。可以看到,当温度较低时,系统处于最低能量状态的概念会大大超过其他状态,因此系统会基本上处于最低的能量状态;当温度较高时,系统处于各个能量状态的概率基本上一样,因此系统会以几乎差不多的概率分布在各个状态上。

某个状态下的能量函数定义如下

2dfca32c19e0bd346755d4d9c308bfe3.png

其中求和符号表示对于系统中任意两个粒子对进行求和, J 表示这两个粒子对的相互作用能,

表示外场对于某个粒子的作用能。

有了这样的模型之后,我们的问题是:如果给定相互作用能 J 和外场作用能

,如何求到每一个粒子所处自旋状态的概率分布或者均值。我们可以把第 i 个粒子处于状态
的概率分布写作整个系统状态分布的边缘分布:

f907950f32811651d3f9077dceab9e93.png

即,对于所有在第 i 个粒子上处于状态

的状态的概率的和。

接着,我们还可以写出该粒子自旋状态的均值:

4db3b7fe73017becfca2e89851588ef8.png

我们可以看到,这里计算的难点就在于要计算几乎所有可能的状态的概率,并对其求和。然而,系统的状态数目随着粒子的数目呈指数级增长,因此这样直接计算的方法是不可行的。

2. 平均场方法求解 Ising 模型

其实,如果系统处于某个状态的概率(联合概率分布)如果具有某些好的性质,比如能拆分成多个独立的项,其实我们也能够比较方便地进行计算。观察系统处于某个状态的概率:

但是注意到,它并没有被拆分为多个独立的项,因为每一项都还是与全局其他粒子的自旋相关。接下来,就到了最为关键的一步了,就是把外界对于每一个粒子的作用都用一个平均场

来代替。把这样近似后的概率分布函数写作 Q。令

考虑到每个粒子只有两种状态&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值