python numpy array倒序_Python: numpy模块

本文介绍了Python的numpy模块,它是进行科学计算的基础库,专注于大型、多维数组的数值运算。文章讲解了如何创建数组,如zeros(), ones(), linspace(), arange(), random等函数,并探讨了数组数据类型的优先级。此外,还详细阐述了numpy的统计函数,包括计算最小值、最大值、中位数、标准差、方差,以及矩阵相乘的原理。最后提到了如何将图片读取为numpy数组。" 131930897,16604815,uni-app购物车与支付流程实现详解,"['uni-app', '前端开发', '支付接口', '订单管理', '移动开发']
摘要由CSDN通过智能技术生成

numpy 模块

内容基于jupyter notebook而来,In [*]以下内容为代码,Out[*]为输出结果;
由于执行顺序不一样,可能会有些数据上下文衔接不上,重点是使用方法。
  • NumPy(Numerical Python) 是 Python 语言中做科学计算的基础库。重在于数值计算,也是大部分Python科学计算库的基础,多用于在大型、多维数组上执行的数值运算。
In [3]:
import numpy as np
# 使用array()来创建一个一维数组
arr = np.array([1,2,3,4,5])
arr
Out[3]:
array([1, 2, 3, 4, 5])

In [6]:
# 使用array()来创建一个多维数组
np.array([[1,2,3,4,5],[6,7,8,9,10]])
Out[6]:
array([[ 1, 2, 3, 4, 5],
 [ 6, 7, 8, 9, 10]])

数组中存储的数据元素类型必须是统一类型

优先级:字符串 > 浮点型 > 整数

In [7]:
np.array([[1,2,3],[4.1,5,6]])
Out[7]:
array([[1. , 2. , 3. ],
 [4.1, 5. , 6. ]])

用numpy的routines函数来创建数组:zeros(),ones(),linespace(),arange(),random

In [35]:
np.zeros(5)
Out[35]:
array([0., 0., 0., 0., 0.])

In [36]:
np.ones(shape=(2,3))
Out[36]:
array([[1., 1., 1.],
 [1., 1., 1.]])

In [38]:
np.linspace(0,20,num=4)
Out[38]:
array([ 0. , 6.66666667, 13.33333333, 20. ])

In [39]:
np.arange(0,20,step=2)
Out[39]:
array([ 0, 2, 4, 6, 8, 10, 12, 14, 16, 18])

In [42]:
# 随机
np.random.randint(0,20,size=(2,3))
Out[42]:
array([[ 7, 19, 17],
 [ 8, 3, 14]])

In [46]:
# 固定随机性
# np.random.seed()的作用: 当设置相同的seed时,每次生成的随机数也相同,如果不设置seed,则每次生成的随机数都会不一样
np.random.seed(23)
np.random.randint(0,20,size=(2,3))
Out[46]:
array([[19, 6, 8],
 [ 9, 8, 13]])

In [47]:
arr.shape # 形状
Out[47]:
(2, 5)

In [48]:
arr.ndim #维度
Out[48]:
2

In [49]:
arr.size # 返回元素个数
Out[49]:
10

In [53]:
type(arr)
Out[53]:
numpy.ndarray

In [50]:
arr.dtype # 数组元素类型
Out[50]:
dtype('int32')

array(dtype=?):可以设定数据类型

arr.dtype = '?':可以修改数据类型

In [114]:
arr = np.random.randint(0,100,size=(5,7))
arr
Out[114]:
array([[34, 0, 91, 11, 62, 96, 88],
 [54, 89, 78, 41, 70, 85, 5],
 [ 7, 4, 16, 9, 56, 48, 43],
 [62, 70, 31, 2, 0, 15, 32],
 [48, 15, 61, 2, 34, 22, 42]])

In [115]:
# 取第2行的数据,下标从0开始计算
arr[2]
Out[115]:
array([ 7, 4, 16, 9, 56
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值