java 去干扰线_去验证码干扰线-java

本文介绍了使用Java结合OpenCV去除验证码中干扰线的过程。通过灰度化、二值化和OpenCV的腐蚀、膨胀等操作,提高了图像的清晰度和OCR识别率。并提供了核心代码示例。
摘要由CSDN通过智能技术生成

首先看看去干扰线的结果(java)

原始图片

2b21708e6e162411be97c3e065b328e8.png

8ab6bd91ba07c6f324bb6f5f092157dd.png

b48dc14c85b30cae67f21de34699b6a7.png

cbb987f5fc76b755321d797cf5451e41.png

去掉干扰线以后的效果

bbe35596eb966790b621822140eb0904.png

21d24fe22e98a045ed63d9b77b294fbf.png

ec98d38aa2f339e8ff10465bd66e7e5a.png

bacd8e052a70e1696d62405ba13977ed.png

这里说下开发过程中遇到的问题

1.在网上使用了各种java类型的算法,直接对BufferedImage进行操作,但是都不理想

2.在使用Tesseract工具进行ocr识别的时候识别率也不高

解决第一个问题,我结合了网上的去干扰线算法,以及使用了opencv算法。使用的opencv也是借鉴一篇网上的博客。

解决第二个问题,是实用Tesseract工具针对我要识别的验证码进行独立的训练,而不是使用原始的训练数据进行识别,这样子可以明显的提升识别率。

源码

// 这里是调用的核心方法

public class ImageCleanPlanOpencv implements ImageClean{

Logger logger = LoggerFactory.getLogger(ImageCleanPlanOpencv.class);

public BufferedImage clean(BufferedImage oriBufferedImage) {

try {

BufferedImage cleanedBufferedImage = null;

//这里可以看到去燥的方法反复调用了几次,是为了得更好的去干扰线结果,这里可以根据自己的验证码情况来编写调用的次数,必须是偶数次,因为opencv的api会进行图像反色

cleanedBufferedImage = cleanL

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>