去验证码干扰线-java

本文介绍了一种使用Java结合OpenCV去除验证码干扰线的方法,并通过Tesseract工具进行OCR识别,通过定制训练数据提升识别效果。文中提到了在实现过程中遇到的问题以及解决方案,并提供了部分源码参考。
摘要由CSDN通过智能技术生成

首先看看去干扰线的结果(java)

原始图片
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述

去掉干扰线以后的效果
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述

这里说下开发过程中遇到的问题
1.在网上使用了各种java类型的算法,直接对BufferedImage进行操作,但是都不理想
2.在使用Tesseract工具进行ocr识别的时候识别率也不高

解决第一个问题,我结合了网上的去干扰线算法,以及使用了opencv算法。使用的opencv也是借鉴一篇网上的博客。
解决第二个问题,是实用Tesseract工具针对我要识别的验证码进行独立的训练,而不是使用原始的训练数据进行识别,这样子可以明显的提升识别率。

源码

// 这里是调用的核心方法
public class ImageCleanPlanOpencv implements ImageClean{
   

    Logger logger = LoggerFactory.getLogger(ImageCleanPlanOpencv.class);

    public BufferedImage clean(BufferedImage oriBufferedImage) {
        try {
            BufferedImage cleanedBufferedImage = null;
            //这里可以看到去燥的方法反复调用了几次,是为了得更好的去干扰线结果,这里可以根据自己的验证码情况来编写调用的次数,必须是偶数次,因为opencv的api会进行图像反色
            cleanedBufferedImage = cleanLinesInImage(oriBufferedImage);
            cleanedBufferedImage=cleanLinesInImage(cleanedBufferedImage);
            cleanedBufferedImage=cleanLinesInImage(cleanedBufferedImage);
            cleanedBufferedImage=cleanLinesInImage(cleanedBufferedImage);
//            try {
   
//                ImageUtil.generateImage(cleanedBufferedImage, ImageConstant.url,"new_","");
//            } catch (IOException e) {
   
//                e.printStackTrace();
//            }
            return cleanedBufferedImage;
        } catch (IOException e) {
            logger.error("去噪过程异常",e);
            e.printStackTrace();
        }
        return null;
    }

    /**
     *
     * @param oriBufferedImage 需要去噪的图像
     * @throws IOException
     */
    public BufferedImage cleanLinesInImage(BufferedImage oriBufferedImage)  throws IOException{

        BufferedImage bufferedImage = oriBufferedImage;
        int h = bufferedImage.getHeight();
        int w = bufferedImage.getWidth();

        // 灰度化
        int[][] gray = new int[w][h];
        for (
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值