常用z反变换公式表_带余项的泰勒公式、欧拉-麦克劳林公式的推导

学过数分的朋友应该都很熟悉这两个常见式子:

泰勒级数:

欧拉-麦克劳林公式:

泰勒级数与泰勒公式

众所周知,泰勒级数被定义为

。这个级数常用于近似普通的函数。然而,在很多应用场景中我们都无法直接去计算这个无穷级数的结果,而取部分和来近似。为了让近似结果准确,我们还通常需要通过
余项来计算 误差上限(Error bound)

下面我们就来看看这个回答中是如何推导带余项的泰勒公式的:

积分型余项的泰勒公式是如何推导出来的?​www.zhihu.com

可以用拉氏变换(Laplace transform)直接推:

利用分部积分,我们不难证明

因此,对于一个在t=a处n+1阶可微的函数f(t),我们有:

两侧同时除以

,得:

通过仔细的观察,我们可以发现右侧的求和式等价于

,于是:

现在利用卷积定理(Convolution theorem)和整数幂函数拉氏变换的性质

,可以发现等式两侧逆变换后就是:

现在对积分换元

,则有:

现在,令x=t+a就可以得到我们常见的带积分余项的泰勒公式:

因此,我们可以通过这种方法得到泰勒公式的误差:

很多时候,我们也不需要知道精确误差值,因此我们通过对积分进行放缩来取得误差上限(设

):

至此,带余项的泰勒公式推导完毕。

带余项的欧拉-麦克劳林公式

普通的欧拉-麦克劳林公式通常意义下只能适用于在求和区间内完全与幂级数展开吻合的函数,因此我们也需要一种带余项的版本来修复这个问题:

现在我们定义周期函数

,其中
。因此
满足许多伯努利多项式的性质:

现在,设

,则有:

又因为

,我们有:

分部积分,得:

事实上
在所有的整数点处是不连续的,所以严谨的推导需要对积分区间取极限

再代入回(1)式,得:

事实上,绿色与蓝色求和是相等的,所以我们可以进行合并,得到:

现在将等式两侧进行调整,得到:

由于

的特性,我们在对红色部分分部积分的时候通常会出现迭代。因此我们决定计算红色积分的一般形式:

很明显,

可以不断地进行展开,直到无限。因此,我们可以尝试先展开几项、然后总结规律:

所以我们不妨猜测红色积分展开之后满足这样的规律:

其中当m=2时结论显然正确,所以我们可以先假设m=z时等式为真,然后说明等式依然在m=z+1时成立:

因此根据数学归纳原理,我们可以宣告(3)式成立。

现在,把(3)式的结果代入回(2)式,得到:

其中,由于除了

所有的奇数次伯努利数均为零,我们可以只对偶数项伯努利数求和:

令余项

,我们就得到了一般意义上的欧拉-麦克劳林公式:

欧拉-麦克劳林公式与调和级数

调和级数

是一个著名的发散级数,然而它的部分和
有很多的研究意义。因此,我们打算使用欧拉-麦克劳林公式来研究它:

现在令a=1、b=n、f(x)=1/x,则

,代入回原式,得:

令括号内的部分

(R与n相关),则有:

现在对等式两侧同时取n->∞的极限,得:

其中等式左侧收敛于欧拉常数(Euler-Mascheroni constant)

,所以有
。于是,我们得到了调和级数的渐进展开公式:

利用Zeta函数与伯努利数的关系式,易得出

,所以这个渐进展开的另一种形式为:

又因为

,我们可以再将横为零的
项包含进来,得到一个更加简化的渐进展开公式:

即 @间宫羽咲sama 在这个问题里提出的公式:

请问这个调和级数与黎曼函数组成的级数为什么有这样的联系?​www.zhihu.com
9cf28bf229a95edf1ae5696961c339d5.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值