x(n) = Z–1 [X(n)]
可由柯西积分定理推导
柯西积分定理为
1/2πj∮C zk–1 dz = (1 (k=0),0 (k≠0)) ①
C是一个绕原点的围线
按照z变换的定义
X(z) = Σ(n=–∞,∞)x(n)z–n ②
将②式两边同时乘上zk–1 ,在X(n)的收敛区域内取一条包围原点的围线做围线积分,得
1/2πj∮CX(z)zk–1 dz = 1/2πj∮C Σ(n=–∞,∞)x(n)z–n+k–1 dz
根据①式,则
1/2πj∮CΣ(n=–∞,∞)x(n)z–n+k–1 dz = Σ(n=–∞,∞)x(n)1/2πj∮Cz–n+k–1 dz = x(k)
即
x(n) = 1/2πj∮CX(z)zn–1 dz
直接计算围线积分是比较麻烦的,实际上求逆z变换时,一般采用三种常用的方法,即长除法,部分分式法和留数法。
逆z变换
最新推荐文章于 2024-12-09 17:29:11 发布