立体几何基本公理体系
公理1:如果一条直线上的两点落在一个平面内,那么这条直线在此平面内。
符号
语言:
图形语言:

公理2:过不在一条直线上的三点,有且仅有一个平面。
图形语言:

推论1:一条直线和直线外的一点确定一个平面。
推论2:两条相交直线确定一个平面。
推论3:两条平行直线确定一个平面。
公理3:如果两个不重合的两个平面有一个公共点,那么它们有且仅有一条过该点的公共直线。(称为交线)
符号语言:
图形语言:

公理4:平行于同一直线的两条直线互相平行。(平行具有传递性)
基本定理体系
等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。
直线与平面平行判定定理:平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行。3证1,含不属于
图形语言:

符号语言:

平面与平面平行判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。5证1
图形语言:

符号语言:
直线平面平行性质定理:一条直线与一个平面平行,则过这条直线的任一平面的交线与该直线平行。3证1
图形语言:

符号语言:
平面与平面平行性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行。3证1
图形语言:

符号语言:
直线与平面垂直判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。5证1
图形语言:

符号语言:
直线与平面垂直性质1:一条直线和平面垂直。那么这条直线与平面内任何直线都垂直。(垂直定义逆命题)2证1
符号语言:
直线与平面垂直性质2:垂直于同一平面的两条直线互相平行。
图形语言:

符号语言:
逆定理:如果两条平行直线其中一条垂直于一个平面,则另一条也垂直于这个平面。
平面与平面垂直判定定理:一个平面过另一个平面的垂线,则这两个平面垂直。2证1
图形语言:

符号语言:
注:当两平面所成二面角为直二面角时,两平面也垂直。
平面与平面垂直性质1:两平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。4证1
图形语言:

符号语言:
平面与平面垂直性质2:如果两个相交平面都垂直于另一个平面,那么这两个平面的交线垂直于这个平面。3证1
图形语言:

符号语言:
常用结论:(仅自然语言说明) 两个平面垂直,则过某个平面内一点垂直于另一个平面的直线在该平面内.
补充定理体系及其证明
三垂线定理:平面内的一条直线,如果与穿过这个平面的一条斜线在这个平面上的射影垂直,那么它也和这条斜线垂直。
图形语言:

符号语言:
证明过程如图:

最小角定理:与平面斜交的直线与它在该平面内的射影的夹角小于等于直线与平面内其他直线的夹角。
图形语言:

证明略。
end.