判定两个点是否在一条直线的同一侧_每日一点10.2 平行线的判定(二次方程)...

 同一平面内,两条直线要么平行要么相交。

一。什么是平行线:

        在同一平面内,两条不相交的直线叫做平行线。

f1e788441868ef009f832b82f8aa4a59.png

如图: 两条直线AB,CD平行,记作 AB ∥ CD . 读作 AB 平行于 CD

基本事实:

平行线的平行公理:

1.经过直线外一点,有且只有一条直线与已知直线平行。

2.两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补。

注意:只有两条平行线被第三条直线所截,同位角才会相等,内错角相等 同旁内角互补

3.平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

二。直线形成的角的关系:

07023846c234233ad0a5d41c07eb5e1d.png

1、同位角:(位置相同)

        两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被截两直线a,b的同一侧的角,我们把这样的两个角称为同位角。

说明: 

    c的同旁的角有 :1,3,5,7是c的同一旁。  2,4,6,8 在同一旁

    a,b的同一侧角有:  1,2 ,5,6 都在左侧。  3,4,7,8 都在右侧   

    同时满足: 在截线c的同旁,被截两直线a,b的同一侧的角有:

    1和5,   3和7,  2和6, 4和8  共4组同位角。

2、内错角:(内:被截线的内侧,错:截线的两侧)两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角(alternate angle)。

  说明:

     被截直线a,b 之间的角:3,4,5,6

    同时满足:截线的两侧,且夹在两条被截直线之间的角有:

            3和6     4和5 两组 内错角

3、同旁内角:(同旁:截线的同一侧,内:被截线的内侧)两条直线被第三条直线所截,在截线同旁,且在被截线之内的两角,叫做同旁内角。同旁内角,“同旁”指在第三条直线的同侧;“内”指在被截两条直线之间。两直线平行,同旁内角互补。同旁内角互补,两直线平行。

  说明:

    被截直线a,b 之间的角:3,4,5,6

    同时满足在截线同旁,且在被截线之内的两角有:

    3和5         4和6  两组 同旁内角       

0764ffca533420de125eda236270b73d.png

同位角、内错角、同旁内角是在两条直线被第三条直线所截时形成的,(常说成三线八角)。

2b7b56761dc5d4f9e8f5838b100b4c65.png

1、同位角的特征。如图,∠1_与∠5为同位角。分析它们的特点:都在两条直线AB、CD的上方,且都在截线EF的右侧。由此得到同位角特征:两条直线被第三条直线所截时,都在两条直线的同一方向,且在截线的同侧的两个角互为同位角。如图中∠4与∠6,∠2与∠8,∠3与∠7具有此特点。

2、内错角的特征。如图,∠4与∠6为内错角,分析它们的特点:夹在两条直线AB、CD的内部,且在截线EF的左右两侧,由此得到内错角的特征:两条直线被第三条直线所截时,夹在两条直线的内部,且在截线两侧的两个角互为内错角。如图1中:∠3与∠5具有此特点,也是一对内错角。

3、同旁内角的特征。如图,∠4与∠5为同旁内角,分析它们的特点:夹在直线AB、CD的内部,且在截线EF的同一侧。由此得到同旁内角的特征:两条直线被第三条直线所截时,夹在两条直线的内部,且在截线同侧的两个角互为同旁内角。如图中:∠3与∠6有此特点,是一对同旁内角   。

总结: 记得三条线怎么找内错角同位角同旁内角

只有同位角是位置相同, 内错角和同旁内角 先找内(被截线夹着的内部)再找相应的角(截线的同侧或异侧),为后面平行线的性质和证明打好基础

==============练习===================

初一:

b36e9033602693deaea1e1fc44ddc2b0.png

428d79295764ea6cb43e76436b146fae.png

fc9be21ef55b778059918ecf18b0a1ae.png

2dfd2045ff9e6d1d255f1e3d88a27a0e.png

edf2da5173e6a2b0086002ecc7346558.png

初二:


1.

c329bd1fa2aaf16514feec3ba36cd44a.png

2.

2418fe126f8e2f7e1f36db6e36987acb.png

3.

3b7b95aae2d21e1b6b9bf43af3b62b6e.png

4. 

6cfefede7fb9fbe924accb94b4deb998.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值