同一平面内,两条直线要么平行要么相交。
一。什么是平行线:
在同一平面内,两条不相交的直线叫做平行线。
如图: 两条直线AB,CD平行,记作 AB ∥ CD . 读作 AB 平行于 CD
基本事实:
平行线的平行公理:
1.经过直线外一点,有且只有一条直线与已知直线平行。
2.两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补。
注意:只有两条平行线被第三条直线所截,同位角才会相等,内错角相等 同旁内角互补
3.平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
二。直线形成的角的关系:
1、同位角:(位置相同)
两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被截两直线a,b的同一侧的角,我们把这样的两个角称为同位角。
说明:
c的同旁的角有 :1,3,5,7是c的同一旁。 2,4,6,8 在同一旁
a,b的同一侧角有: 1,2 ,5,6 都在左侧。 3,4,7,8 都在右侧
同时满足: 在截线c的同旁,被截两直线a,b的同一侧的角有:
1和5, 3和7, 2和6, 4和8 共4组同位角。
2、内错角:(内:被截线的内侧,错:截线的两侧)两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角(alternate angle)。
说明:
被截直线a,b 之间的角:3,4,5,6
同时满足:截线的两侧,且夹在两条被截直线之间的角有:
3和6 4和5 两组 内错角
3、同旁内角:(同旁:截线的同一侧,内:被截线的内侧)两条直线被第三条直线所截,在截线同旁,且在被截线之内的两角,叫做同旁内角。同旁内角,“同旁”指在第三条直线的同侧;“内”指在被截两条直线之间。两直线平行,同旁内角互补。同旁内角互补,两直线平行。
说明:
被截直线a,b 之间的角:3,4,5,6
同时满足在截线同旁,且在被截线之内的两角有:
3和5 4和6 两组 同旁内角
同位角、内错角、同旁内角是在两条直线被第三条直线所截时形成的,(常说成三线八角)。
1、同位角的特征。如图,∠1_与∠5为同位角。分析它们的特点:都在两条直线AB、CD的上方,且都在截线EF的右侧。由此得到同位角特征:两条直线被第三条直线所截时,都在两条直线的同一方向,且在截线的同侧的两个角互为同位角。如图中∠4与∠6,∠2与∠8,∠3与∠7具有此特点。
2、内错角的特征。如图,∠4与∠6为内错角,分析它们的特点:夹在两条直线AB、CD的内部,且在截线EF的左右两侧,由此得到内错角的特征:两条直线被第三条直线所截时,夹在两条直线的内部,且在截线两侧的两个角互为内错角。如图1中:∠3与∠5具有此特点,也是一对内错角。
3、同旁内角的特征。如图,∠4与∠5为同旁内角,分析它们的特点:夹在直线AB、CD的内部,且在截线EF的同一侧。由此得到同旁内角的特征:两条直线被第三条直线所截时,夹在两条直线的内部,且在截线同侧的两个角互为同旁内角。如图中:∠3与∠6有此特点,是一对同旁内角 。
总结: 记得三条线怎么找内错角同位角同旁内角
只有同位角是位置相同, 内错角和同旁内角 先找内(被截线夹着的内部)再找相应的角(截线的同侧或异侧),为后面平行线的性质和证明打好基础
==============练习===================
初一:
初二:
1.
2.
3.
4.