什么是递归?

本文深入探讨了递归算法的概念,介绍了其在程序设计中的应用,包括数据定义、问题求解及数据结构处理。文章详细解释了递归的三个关键组成部分:边界条件、递归前进段和递归返回段,并讨论了递归的优缺点。通过汉诺塔问题实例,展示了递归如何简化复杂问题的解决。
摘要由CSDN通过智能技术生成

程序调用自身的编程技巧称为递归( recursion)。递归做为一种算法程序设计语言中广泛应用。 一个过程或函数在其定义或说明中有直接或间接调用自身的一种方法,它通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解,递归策略只需少量的程序就可描述出解题过程所需要的多次重复计算,大大地减少了程序的代码量。递归的能力在于用有限的语句来定义对象的无限集合。一般来说,递归需要有边界条件、递归前进段和递归返回段。当边界条件不满足时,递归前进;当边界条件满足时,递归返回。

 

递归应用

递归算法一般用于解决三类问题:

(1)数据的定义是按递归定义的。(Fibonacci函数

(2)问题解法按递归算法实现。

这类问题虽则本身没有明显的递归结构,但用递归求解比迭代求解更简单,如Hanoi问题。

(3)数据的结构形式是按递归定义的。

如二叉树、广义表等,由于结构本身固有的递归特性,则它们的操作可递归地描述。

递归的缺点:

递归算法解题相对常用的算法如普通循环等,运行效率较低。因此,应该尽量避免使用递归,除非没有更好的算法或者某种特定情况,递归更为适合的时候。在递归调用的过程当中系统为每一层的返回点、局部量等开辟了栈来存储。递归次数过多容易造成栈溢出等。

递归典型问题: 梵塔问题(汉诺塔问题)

已知有三根针分别用A, B, C表示,在A中从上到下依次放n个从小到大的盘子,现要求把所有的盘子

从A针全部移到B针,移动规则是:可以使用C临时存放盘子,每次只能移动一块盘子,而且每根针上

不能出现大盘压小盘,找出移动次数最小的方案.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值