Your browser doesn't support the features required by impress.js,
so you are presented with a simplified version of this presentation.
For the best experience please use the latest Chrome or
Safari browser. Firefox 10 (to be released soon)
will also handle it.
If you have fast machine and recent Google Chrome or Safari installed,
please check a bit more "moving" version of that presentation
Otherwise, scroll down to see the slides
符合语言习惯的Python编程
Jun 2013 ·
He, Xiaocong
Programs must be written for people to read,
and only incidentally for machines to execute.
程序必须先让人读懂,然后才能让计算机执行。
- Abelson & Sussman
交换赋值
不推荐
temp = a
a = b
b = a
推荐
a, b = b, a # 先生成一个元组(tuple)对象,然后unpack
Unpacking
不推荐
l = ['David', 'Pythonista', '+1-514-555-1234']
first_name = l[0]
last_name = l[1]
phone_number = l[2]
推荐
l = ['David', 'Pythonista', '+1-514-555-1234']
first_name, last_name, phone_number = l
# Python 3 Only
first, *middle, last = another_list
使用操作符in
不推荐
if fruit == "apple" or fruit == "orange" or fruit == "berry":
# 多次判断
推荐
if fruit in ["apple", "orange", "berry"]:
# 使用 in 更加简洁
字符串操作
不推荐
colors = ['red', 'blue', 'green', 'yellow']
result = ''
for s in colors:
result += s # 每次赋值都丢弃以前的字符串对象, 生成一个新对象
推荐
colors = ['red', 'blue', 'green', 'yellow']
result = ''.join(colors) # 没有额外的内存分配
字典键值列表
不推荐
for key in my_dict.keys():
# my_dict[key] ...
推荐
for key in my_dict:
# my_dict[key] ...
# 只有当循环中需要更改key值的情况下,我们需要使用 my_dict.keys()
# 生成静态的键值列表。
字典键值判断
不推荐
if my_dict.has_key(key):
# ...do something with d[key]
推荐
if key in my_dict:
# ...do something with d[key]
字典 get 和 setdefault 方法
不推荐
navs = {}
for (portfolio, equity, position) in data:
if portfolio not in navs:
navs[portfolio] = 0
navs[portfolio] += position * prices[equity]
推荐
navs = {}
for (portfolio, equity, position) in data:
# 使用 get 方法
navs[portfolio] = navs.get(portfolio, 0) + \
position * prices[equity]
# 或者使用 setdefault 方法
navs.setdefault(portfolio, 0)
navs[portfolio] += position * prices[equity]
判断真伪
不推荐
if x == True:
# ....
if len(items) != 0:
# ...
if items != []:
# ...
推荐
if x:
# ....
if items:
# ...
遍历列表以及索引
不推荐
items = 'zero one two three'.split()
# method 1
i = 0
for item in items:
print i, item
i += 1
# method 2
for i in range(len(items)):
print i, items[i]
推荐
items = 'zero one two three'.split()
for i, item in enumerate(items):
print i, item
列表推导
不推荐
new_list = []
for item in a_list:
if condition(item):
new_list.append(fn(item))
推荐
new_list = [fn(item) for item in a_list if condition(item)]
列表推导-嵌套
不推荐
for sub_list in nested_list:
if list_condition(sub_list):
for item in sub_list:
if item_condition(item):
# do something...
推荐
gen = (item for sl in nested_list if list_condition(sl) \
for item in sl if item_condition(item))
for item in gen:
# do something...
循环嵌套
不推荐
for x in x_list:
for y in y_list:
for z in z_list:
# do something for x & y
推荐
from itertools import product
for x, y, z in product(x_list, y_list, z_list):
# do something for x, y, z
尽量使用生成器代替列表
不推荐
def my_range(n):
i = 0
result = []
while i < n:
result.append(fn(i))
i += 1
return result # 返回列表
推荐
def my_range(n):
i = 0
result = []
while i < n:
yield fn(i) # 使用生成器代替列表
i += 1
*尽量用生成器代替列表,除非必须用到列表特有的函数。
中间结果尽量使用imap/ifilter代替map/filter
不推荐
reduce(rf, filter(ff, map(mf, a_list)))
推荐
from itertools import ifilter, imap
reduce(rf, ifilter(ff, imap(mf, a_list)))
*lazy evaluation 会带来更高的内存使用效率,特别是当处理大数据操作的时候。
使用any/all函数
不推荐
found = False
for item in a_list:
if condition(item):
found = True
break
if found:
# do something if found...
推荐
if any(condition(item) for item in a_list):
# do something if found...
属性(property)
不推荐
class Clock(object):
def __init__(self):
self.__hour = 1
def setHour(self, hour):
if 25 > hour > 0: self.__hour = hour
else: raise BadHourException
def getHour(self):
return self.__hour
推荐
class Clock(object):
def __init__(self):
self.__hour = 1
def __setHour(self, hour):
if 25 > hour > 0: self.__hour = hour
else: raise BadHourException
def __getHour(self):
return self.__hour
hour = property(__getHour, __setHour)
使用 with 处理文件打开
不推荐
f = open("some_file.txt")
try:
data = f.read()
# 其他文件操作..
finally:
f.close()
推荐
with open("some_file.txt") as f:
data = f.read()
# 其他文件操作...
使用 with 忽视异常(仅限Python 3)
不推荐
try:
os.remove("somefile.txt")
except OSError:
pass
推荐
from contextlib import ignored # Python 3 only
with ignored(OSError):
os.remove("somefile.txt")
使用 with 处理加锁
不推荐
import threading
lock = threading.Lock()
lock.acquire()
try:
# 互斥操作...
finally:
lock.release()
推荐
import threading
lock = threading.Lock()
with lock:
# 互斥操作...
参考
Idiomatic Python: http://python.net/~goodger/projects/pycon/2007/idiomatic/handout.html
Python Code Style: http://docs.python-guide.org/en/latest/writing/style.html
谢谢 !
Use a spacebar or arrow keys to navigate