这可能不是很明显,但pd.Series.isin使用O(1) – 查找.
经过分析,证明了上述说法,我们将利用其洞察力创建一个Cython原型,可以轻松击败最快的开箱即用解决方案.
假设“set”有n个元素,“series”有m个元素.运行时间是:
T(n,m)=T_preprocess(n)+m*T_lookup(n)
对于纯python版本,这意味着:
> T_preprocess(n)= 0 – 无需预处理
> T_lookup(n)= O(1) – 众所周知的python集的行为
>结果T(n,m)= O(m)
pd.Series.isin(x_arr)会发生什么?显然,如果我们跳过预处理并在线性时间内搜索,我们将得到O(n * m),这是不可接受的.
在调试器或探查器(我使用valgrind-callgrind kcachegrind)的帮助下很容易看到,发生了什么:工作马是函数__pyx_pw_6pandas_5_libs_9hashtable_23ismember_int64.其定义可以在here找到:
>在预处理步骤中,从x_arr的n个元素中创建散列映射(pandas使用khash from klib),即在运行时间O(n)中.
> m个查找在O(1)中发生,或者在构造的散列图中总共发生O(m).
>结果T(n,m)= O(m)O(n)
我们必须记住 – numpy-array的元素是raw-C-integers而不是原始集合中的Python对象 – 所以我们不能按原样使用set.
将Python对象集转换为一组C-int的替代方法是将单个C-int转换为Python对象,从而能够使用原始集.这就是[i in x_set for i in ser.values] -variant:
>没有预处理.
> m个查找发生在每个O(1)时间或总共O(m),但由于必要的Python对象创建,查找速度较慢.
>结果T(n,m)= O(m)
显然,使用Cython可以加快这个版本的速度.
但是足够的理论,让我们来看看固定ms的不同ns的运行时间:
我们可以看到:预处理的线性时间主导了大ns的numpy版本.从numpy转换为pure-python(numpy-> python)的版本具有与pure-python版本相同的常量行为,但速度较慢,因为必要的转换 – 这完全符合我们的分析.
在图中不能很好地看出:如果n< n numpy版本变得更快 - 在这种情况下,khash-lib的更快查找起着最重要的作用,而不是预处理部分. 我从这个分析中得到的结论:
> n< m:pd.Series.isin应该被采用,因为O(n) - 预处理并不昂贵.
> n> m :(可能是cythonized版本的)[i在x_set for i in ser.values]应该采用,因此避免使用O(n).
>显然有一个灰色区域,其中n和m大致相等,如果没有测试,很难说哪个解决方案最好.
>如果你有它在你的控制之下:最好的做法是直接将集合构建为C整数集(khash(already wrapped in pandas)或甚至一些c -implementations),从而消除了预处理的需要.我不知道,大pandas中是否有可以重复使用的东西,但在Cython中编写函数可能不是什么大问题.
问题是最后一个建议不能开箱即用,因为在它们的界面中,大pandas和numpy都没有一套概念(至少对我有限的知识).但是拥有raw-C-set-interfaces将是两全其美的:
>不需要预处理,因为值已作为集合传递
>不需要转换,因为传递的集合包含raw-C值
我编写了一个快速而又脏的Cython-wrapper for khash(灵感来自pandas包装),它可以通过pip install https://github.com/realead/cykhash/zipball/master安装,然后与Cython一起用于更快的isin版本:
%%cython
import numpy as np
cimport numpy as np
from cykhash.khashsets cimport Int64Set
def isin_khash(np.ndarray[np.int64_t, ndim=1] a, Int64Set b):
cdef np.ndarray[np.uint8_t,ndim=1, cast=True] res=np.empty(a.shape[0],dtype=np.bool)
cdef int i
for i in range(a.size):
res[i]=b.contains(a[i])
return res
作为另一种可能性,可以包装c的unordered_map(参见清单C),其缺点是需要c-library和(正如我们将看到的)稍慢.
比较方法(参见清单D创建时间):
khash比numpy-> python快约20倍,比纯python快6倍(但纯python不是我们想要的),甚至比cpp-version快3倍.
房源
1)用valgrind进行分析:
#isin.py
import numpy as np
import pandas as pd
np.random.seed(0)
x_set = {i for i in range(2*10**6)}
x_arr = np.array(list(x_set))
arr = np.random.randint(0, 20000, 10000)
ser = pd.Series(arr)
for _ in range(10):
ser.isin(x_arr)
现在:
>>> valgrind --tool=callgrind python isin.py
>>> kcachegrind
导致以下调用图:
B:用于产生运行时间的ipython代码:
import numpy as np
import pandas as pd
%matplotlib inline
import matplotlib.pyplot as plt
np.random.seed(0)
x_set = {i for i in range(10**2)}
x_arr = np.array(list(x_set))
x_list = list(x_set)
arr = np.random.randint(0, 20000, 10000)
ser = pd.Series(arr)
lst = arr.tolist()
n=10**3
result=[]
while n<3*10**6:
x_set = {i for i in range(n)}
x_arr = np.array(list(x_set))
x_list = list(x_set)
t1=%timeit -o ser.isin(x_arr)
t2=%timeit -o [i in x_set for i in lst]
t3=%timeit -o [i in x_set for i in ser.values]
result.append([n, t1.average, t2.average, t3.average])
n*=2
#plotting result:
for_plot=np.array(result)
plt.plot(for_plot[:,0], for_plot[:,1], label='numpy')
plt.plot(for_plot[:,0], for_plot[:,2], label='python')
plt.plot(for_plot[:,0], for_plot[:,3], label='numpy->python')
plt.xlabel('n')
plt.ylabel('running time')
plt.legend()
plt.show()
C:cpp-wrapper:
%%cython --cplus -c=-std=c++11 -a
from libcpp.unordered_set cimport unordered_set
cdef class HashSet:
cdef unordered_set[long long int] s
cpdef add(self, long long int z):
self.s.insert(z)
cpdef bint contains(self, long long int z):
return self.s.count(z)>0
import numpy as np
cimport numpy as np
cimport cython
@cython.boundscheck(False)
@cython.wraparound(False)
def isin_cpp(np.ndarray[np.int64_t, ndim=1] a, HashSet b):
cdef np.ndarray[np.uint8_t,ndim=1, cast=True] res=np.empty(a.shape[0],dtype=np.bool)
cdef int i
for i in range(a.size):
res[i]=b.contains(a[i])
return res
D:使用不同的set-wrappers绘制结果:
import numpy as np
import pandas as pd
%matplotlib inline
import matplotlib.pyplot as plt
from cykhash import Int64Set
np.random.seed(0)
x_set = {i for i in range(10**2)}
x_arr = np.array(list(x_set))
x_list = list(x_set)
arr = np.random.randint(0, 20000, 10000)
ser = pd.Series(arr)
lst = arr.tolist()
n=10**3
result=[]
while n<3*10**6:
x_set = {i for i in range(n)}
x_arr = np.array(list(x_set))
cpp_set=HashSet()
khash_set=Int64Set()
for i in x_set:
cpp_set.add(i)
khash_set.add(i)
assert((ser.isin(x_arr).values==isin_cpp(ser.values, cpp_set)).all())
assert((ser.isin(x_arr).values==isin_khash(ser.values, khash_set)).all())
t1=%timeit -o isin_khash(ser.values, khash_set)
t2=%timeit -o isin_cpp(ser.values, cpp_set)
t3=%timeit -o [i in x_set for i in lst]
t4=%timeit -o [i in x_set for i in ser.values]
result.append([n, t1.average, t2.average, t3.average, t4.average])
n*=2
#ploting result:
for_plot=np.array(result)
plt.plot(for_plot[:,0], for_plot[:,1], label='khash')
plt.plot(for_plot[:,0], for_plot[:,2], label='cpp')
plt.plot(for_plot[:,0], for_plot[:,3], label='pure python')
plt.plot(for_plot[:,0], for_plot[:,4], label='numpy->python')
plt.xlabel('n')
plt.ylabel('running time')
ymin, ymax = plt.ylim()
plt.ylim(0,ymax)
plt.legend()
plt.show()