对角互补模型一般是四边形中,满足对角互补条件,从中得到一些结论。初中阶段常考的有两种,一种是90度对角互补,另一种是120度对角互补。
解决对角互补模型,常用的辅助线有两种:
①过某一点作垂线;
②以某一点为中心,旋转。
我们今天先分享第一种,90度对角互补模型。
初中数学学习圈 - 知乎www.zhihu.com
【例题】
如图,∠ABC=∠ADC=90°,BD平分∠ABC,BD=4,求四边形ABCD的面积。
(例题的视频讲解在文章末尾)

分析:这个例题就是90度对角互补模型,题目中∠ABC=∠ADC=90°,因为BD是角平分线,所以∠ABD=∠CBD=45°,有特殊角,又有角平分线,同学们能想到作什么辅助线?
回忆一下角平分线性质,角平分线上的点到角两边的距离相等。过点D分别向AB、BC作垂线。
【重要提示】初中阶段平面几何题中出现30度、60度、45度特殊角,往往都是要构造直角三角形。

三角形DFB和三角形DGB都是等腰直角三角形,且DF=DG,
四边形BGDF是正方形。
∵∠ADF=∠GDC(手拉手模型)
∴Rt△ADF ≌ Rt△CDG

因此,题目中求四边形ABCD的面积就转化为求正方形BGDF的面积。
四边形ABCD的面积=1/2BD²=4×4÷2=8
这个题目也可以用旋转法解决。
大概说一下思路,详细的证明过程,同学们自行思考。
把三角形ABD绕点D旋转90度

可以得到一个等腰直角三角形DBB'
求四边形ABCD的面积就转化为求等腰直角三角形DBB'的面积。
△DBB'的腰长是4,面积也就能得出:4×4÷2=8
视频讲解在这里↓↓↓↓↓↓
知乎视频www.zhihu.com