Euler 27 二次“素数生成”多项式

博客介绍了如何解决Euler 27问题,涉及关键点包括使用米勒测试快速判断素数以及优化剪枝策略。通过米勒测试根据费马小定理判断素数,确保函数输入范围限定,并讨论了剪枝策略,如当i=0时b必须为素数,i=1时a+b+1也需为素数。最后,提出了一个素数筛的变形来找到合数的最小素因子。
摘要由CSDN通过智能技术生成

题目链接

关于这道题目

需要解决的点主要是

  1. 判断一个数是不是素数
  2. 如何有效的减枝
判断一个数是不是素数

判断一个数是不是素数有很多种做法,比如试除法

今天呢使用一个更快的办法米勒测试

主要的原理是根据费马小定理

定理描述

​ 当且仅当 P 为素数时:

​ ap-1 mod P 为 1

​ 1 <= a <= p - 1

那么我们只需要选取若干个a,代入以上公式

求得结果,若均为1,说明 P 在很大概率上是个素数

代码如下

/*************************************************************************
	> File Name: 1.c
	> Author:Gin.TaMa 
	> Mail:1137554811@qq.com 
	> Created Time: 2019年01月08日 星期二 11时52分13秒
 ************************************************************************/

#include<stdio.h>
#include<stdlib.h>
#include<time.h>
#define test_round 30

int r_m_test(int x){
   
    if(x <= 1)return 0;
    //注意对函数的输入范围进行限制,这才是一个良好的函数定义方法
    int a , m, ans ;
    for(int i = 0;i < test_round;i ++){
   
        a = rand()%(x - 1) + 1;
        m = x - 1;
        ans = 1;
        while(m){
   
            if(m & 1)ans = ans * a % x;
            a = a * a % x;
            m >>= 1;
        }
        if(ans != 1
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值