欧拉计划第27题

二次“素数生成”多项式

欧拉发现了这个著名的二次多项式:

n2 + n + 41

对于连续的整数n从0到39,这个二次多项式生成了40个素数。然而,当n = 40时,402 + 40 + 41 = 40(40 + 1) + 41能够被41整除,同时显然当n = 41时,412 + 41 + 41也能被41整除。

随后,另一个神奇的多项式n2 − 79n + 1601被发现了,对于连续的整数n从0到79,它生成了80个素数。这个多项式的系数-79和1601的乘积为-126479。

考虑以下形式的二次多项式:

  • n2 + an + b, 满足|a| < 1000且|b| < 1000

  • 其中|n|指n的模或绝对值
    例如|11| = 11以及|−4| = 4

这其中存在某个二次多项式能够对从0开始尽可能多的连续整数n都生成素数,求其系数a和b的乘积。

 

代码演示


#include <stdio.h>

#include <limits.h>

#include <inttypes.h>

#include <time.h>

#include <stdlib.h>
#define MAX_N 1000
#define MAX_M 2500
#define R_M_TEST_ROUND 30

int prime[MAX_M + 5] = {0};
int gcd(int a, int b) {
    if (!b) return a;
    return gcd(b, a % b);
}
bool R_M_TEST(int x) {
    if (x <= 1) return false;
    int64_t a, m, ans;
    for (int i = 0; i < R_M_TEST_ROUND; i++) {
        a = (rand() % (x - 1)) + 1;
        ans = 1;
        m = x - 1;
        while (m) {
            if (m % 2) ans = (ans * a) % x;
            a = (a * a) % x;
            m /= 2;
        }
        if (ans != 1) return false;
    }
    return true;
}
int HowManyPrime(int a, int b) {
    int i = 0;
    while (R_M_TEST(i * i + a * i + b)) ++i;
    return i;
}

int main() {
    srand(time(0));
    prime[1] = INT_MAX;
    for (int i = 2; i <= MAX_M; i++)
        if (!prime[i])
            for (int j = i; j <= MAX_M; j += i)
                if (!prime[j]) prime[j] = i;
    int maxNum = 40, tempNum, result = 0;
    for (int a = 1 - MAX_N; a < MAX_N; a++) 
        for (int b = (a < 0 ? -a + 1 : 2); b < MAX_N; b++) {
            if (prime[b] != b) continue;
            if (prime[b + a + 1] != b + a + 1) continue;
            if (a > 0 && b > 0 && prime[gcd(a, b)] <= maxNum) continue;
            tempNum = HowManyPrime(a, b);
            if (tempNum > maxNum) {
                result = a * b;
                maxNum = tempNum;
            }
        }
    printf("%d\n", result);
    return 0;

}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值