二次“素数生成”多项式
欧拉发现了这个著名的二次多项式:
n2 + n + 41
对于连续的整数n从0到39,这个二次多项式生成了40个素数。然而,当n = 40时,402 + 40 + 41 = 40(40 + 1) + 41能够被41整除,同时显然当n = 41时,412 + 41 + 41也能被41整除。
随后,另一个神奇的多项式n2 − 79n + 1601被发现了,对于连续的整数n从0到79,它生成了80个素数。这个多项式的系数-79和1601的乘积为-126479。
考虑以下形式的二次多项式:
-
n2 + an + b, 满足|a| < 1000且|b| < 1000
-
其中|n|指n的模或绝对值
例如|11| = 11以及|−4| = 4
这其中存在某个二次多项式能够对从0开始尽可能多的连续整数n都生成素数,求其系数a和b的乘积。
代码演示
#include <stdio.h>
#include <limits.h>
#include <inttypes.h>
#include <time.h>
#include <stdlib.h>
#define MAX_N 1000
#define MAX_M 2500
#define R_M_TEST_ROUND 30
int prime[MAX_M + 5] = {0};
int gcd(int a, int b) {
if (!b) return a;
return gcd(b, a % b);
}
bool R_M_TEST(int x) {
if (x <= 1) return false;
int64_t a, m, ans;
for (int i = 0; i < R_M_TEST_ROUND; i++) {
a = (rand() % (x - 1)) + 1;
ans = 1;
m = x - 1;
while (m) {
if (m % 2) ans = (ans * a) % x;
a = (a * a) % x;
m /= 2;
}
if (ans != 1) return false;
}
return true;
}
int HowManyPrime(int a, int b) {
int i = 0;
while (R_M_TEST(i * i + a * i + b)) ++i;
return i;
}
int main() {
srand(time(0));
prime[1] = INT_MAX;
for (int i = 2; i <= MAX_M; i++)
if (!prime[i])
for (int j = i; j <= MAX_M; j += i)
if (!prime[j]) prime[j] = i;
int maxNum = 40, tempNum, result = 0;
for (int a = 1 - MAX_N; a < MAX_N; a++)
for (int b = (a < 0 ? -a + 1 : 2); b < MAX_N; b++) {
if (prime[b] != b) continue;
if (prime[b + a + 1] != b + a + 1) continue;
if (a > 0 && b > 0 && prime[gcd(a, b)] <= maxNum) continue;
tempNum = HowManyPrime(a, b);
if (tempNum > maxNum) {
result = a * b;
maxNum = tempNum;
}
}
printf("%d\n", result);
return 0;
}