python 过采样 权重实现_机器学习中非平衡数据处理

这一篇主要说一下机器学习中非平衡数据的处理方式以及用python如何实现.

在前面的一篇推文中我们提到过,非平衡数据会影响最后的评判效果,严重的会带来过拟合的效果,即模型总是把样本划分到样本量较多的那一种。为了让模型的评判更准确,我们需要对非平衡数据进行一定的处理,主要有以下几种方式:欠采样

过采样

人工合成

调权重

在开始介绍不同的处理方式之前,我们先引入一组非平衡数据。

#导入一些相关库

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LogisticRegression

from sklearn.metrics import classification_report

from sklearn.metrics import roc_curve, auc

from sklearn.preprocessing import scale

#导入数据

df=pd.read_excel(r"C:\Users\zhangjunhong\Desktop\Unbanlanced-data.xlsx").fillna(0)

看一下正负样本的具体数据量情况。

x=df.iloc[:,1:-1]

y=df["label"]

print(y.value_counts())

print("-------------------------")

print(y.value_counts(normalize=True))

该数据量的正负样本比例接近7:3,我们看一下不做任何处理的情况下,模型的预测效果如何。

#将模型进行封装,方便调用

def get_result_data(x,y):

x_=scale(x,with_mean=True,with_std=True)

x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.4,random_state=0)

model=LogisticRegression()

clf=model.fit(x_train,y_train)

print("LR模型测试成绩:{:.2f}".format(clf.score(x_test,y_test)))

y_pred=clf.predict(x_test)

target_names = ['class 0', 'class 1']

print(classification_report(y_test, y_pred, target_names=target_names))

y_pred1=clf.decision_function(x_test)

fpr,tpr,threshold=roc_curve(y_test,y_pred1)

rocauc=auc(fpr,tpr)#计算AUC

print("ROC分数:{:.2f}".format(rocauc))

if __name__=="__main__":

get_result_data(x,y)

模型的准确率是0.75,ROC分数也就是AUC值为0.76,看着还不错,但是class1的召回率要明显高于class0的召回率,这是因为原样本量中,class1的量要明显高于class0的原因。

欠采样

下采样(under-sampling),是对非平衡数据中样本数较多的那一类进行采样,采样使其约等于样本量较少那一类的样本量。

df1=df[df["label"]==1]#正样本部分

df0=df[df["label"]==0]#负样本部分

#对正样本按0.5的比例进行下采样

df2=df1.sample(frac=0.5)

#将下采样后的正样本与负样本进行组合

df_new=pd.concat([df0,df2])

x=df_new.iloc[:,1:-1]

y=df_new["label"]

#下采样以后正负样本量情况

print(y.value_counts())

print("-------------------------")

print(y.value_counts(normalize=True))

对模型进行下采样以后,正负样本的样本量基本接近1:1,符合我们目的,接下来看看下采样后的模型表现。

if __name__=="__main__":

get_result_data(x,y)

模型的准确率略有下降,但是ROC分数没发生什么变化,class0和class1的召回率也接近相等。

过采样

过采样(over-sampling),是对非平衡数据中样本数较少的那一类进行采样,常规的做法就是将其复制几遍来达到正负样本平衡,因为是同样的数据复制多份,很容易发生过拟合,一般比较少用。具体的实现方式就比较简单啦,这里不罗列。

人工合成

人工合成就是人为地去合成一些样本量较少的数据,来达到正负样本平衡,人工合成数据能够很好地避免过采样带来的模型过拟合。比较常用的方法就是SMOTE。

SMOTE的算法原理如下:根据正负样本比例,确认采样的比例,即要合成样本的数量(k值)

对于少数样本中的每个x,利用KNN算法,选取k个待采样的值x_n

然后对x_n进行如下运算得到对应的x_new:x_new=x+rand(1)*|x-x_n|

(rand(1)表示生成0-1之间的一个随机数)

关于SMOTE算法的实现也由现成的库,我们直接pip安装就可以使用。

from collections import Counter

from imblearn.over_sampling import SMOTE

print('Original dataset shape {}'.format(Counter(y)))

sm = SMOTE(random_state=42)

X_res, y_res = sm.fit_sample(x, y)

print('Resampled dataset shape {}'.format(Counter(y_res)))

原本正负样本绝对量分别为12193:5617,人工合成部分样本量以后,正负样本的绝对量变为了12193:12193,完全平衡。

人工合成以后模型预测效果

if __name__=="__main__":

get_result_data(X_res, y_res)

模型的准确率和ROC分数较欠采样都有略微的上涨,其中class0的召回上涨,class1略降。

调权重

调权重就是调整模型中正负样本的在模型表现中的表决权重,以此来平衡样本绝对量的不平衡。比如正负样本绝对量的比值为1:10,为了抵消这种量级上的不平衡,我们在模型中可以给与模型正负样本10:1的表决权重,也就是10个正样本的表决相当于1个负样本的表决。

这个过程我们也可以直接设置模型参数class_weight="balanced"进行实现。

x_=scale(x,with_mean=True,with_std=True)

x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.4,random_state=0)

model=LogisticRegression(class_weight="balanced")

clf=model.fit(x_train,y_train)

print("LR模型测试成绩:{:.2f}".format(clf.score(x_test,y_test)))

y_pred=clf.predict(x_test)

target_names = ['class 0', 'class 1']

print(classification_report(y_test, y_pred, target_names=target_names))

y_pred1=clf.decision_function(x_test)

fpr,tpr,threshold=roc_curve(y_test,y_pred1)

rocauc=auc(fpr,tpr)#计算AUC

print("ROC分数:{:.2f}".format(rocauc))

调权重的结果和人工合成数据的结果接近一致。

最后

通过上面几种方法的模型结果可以看出:用任意一种方式处理或者不处理,ROC基本是一致的,这也验证了我们在前面的推文中说到的,ROC是和样本是否平衡没关系的。

如果不做任何处理,模型的准确率会高,但是会发生严重的过拟合。

在做处理的这几种方式中,欠采样的效果要差于其他三种。

综合来看,直接在模型参数中调权重是效果最好,也是最快捷的一种方式,不用事先去做什么处理。

本文最后的结论是针对本次数据得出的结论,不代表在任何数据上效果都是如此,可能会限于数据本身的原因,结果会有所不同,本文重点讲述非平衡数据不同的处理方式以及实现方式。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值