C语言程序设计第一章【DOC精选】
第一章 公共基础知识
1.1数据结构与算法
1.1.1算法
1.算法的基本概念
(1)概念:算法是指一系列解决问题的清晰指令。
(2)4个基本特征:可行性、确定性、有穷性、拥有足够的情报。
(3)两种基本要素:对数据对象的运算和操作、算法的控制结构(运算和操作时间的顺序)。
(4)设计的基本方法:列举法、归纳法、递推法、递归法、减半递推技术和回溯法。
2.算法的复杂度
(1)算法的时间复杂度:执行算法所需要的计算工作量。
(2)算法的空间复杂度:执行算法所需的内存空间。
1.1.2数据结构的基本概念
数据结构指相互有关联的数据元素的集合,即数据的组织形式,其中逻辑结构反映数据元素之间逻辑关系。其中逻辑结构反映数据元素之间逻辑关系;存储结构为数据结构的逻辑结构在计算机存储空间中的存放形式,有顺序存储、链式存储、引索存储和散列存储4种方式。
数据结构按个元素之间前后关系的复杂度可划分为:
(1)线性结构:有且只有一个根节点,且每个节点最多有一个直接前驱和一个直接后继的非空数据结构。
(2)非线性结构:不满足线性结构的数据结构。
1.1.3线性表及其顺序存储结构
1.线性表的基本概念
线性结构又称线性表,线性表是最简单也是最常用的一种数据结构。
2.线性表的顺序存储结构
元素所占的存储空间必须连续。
元素在存储空间的位置是按逻辑顺序存放的。
3.线性表的插入运算
在第i个元素之前插入一个新元素的步骤如下:
步骤一:把原来第n个节点至第i个节点依次往后移一个元素位置。
步骤二:把新节点放在第i个位置上。
步骤三:修正线性表的节点个数。
4.线性表的删除运算
步骤一:把i个元素之后不包括第i个元素的n-i个元素依次前移一个位置;
步骤二:修正线性表的结点个数。
1.1.4栈和队列
1.栈及其基本运算
(1)基本概念:栈是一种特殊的线性表,其插入运算与删除运算都只在线性表的一端进行,也被称为“先进后出”表或“后进先出”表。
栈顶:允许插入与删除的一端。
栈底:栈顶的另一端。
空栈:栈中没有元素的栈。
(2)特点。
栈顶元素是最后被插入和最早被删除的元素。
栈底元素是最早被插入和最后被删除的元素。
栈有记忆作用。
在顺序存储结构下,栈的插入和删除运算不需移动表中其他数据元素。
栈顶指针top动态反映了栈中元素的变化情况。
(3)顺序存储和运算:入栈运算、腿栈运算和读栈顶运算。
2.队列及其基本运算
(1)基本概念:队列是指允许在一端进行插入,在另一端进行删除的线性表,又称“先进先出”的线性表。
队尾:允许插入的一端,用尾指针指向队尾元素。
排头:允许删除的一端,用头指针指向头元素的前一位置。
(2)循环队列及其运算:入队运算与退队运算。
1.1.5树和二叉树
1.树的基本概念
树是简单的非线性结构,树中有且仅有一个没有前驱的节点称为“根”,其余节点分成m个互不相交的有限集合T1,T2,…,T|rmm,每个集合又是一棵树,称T1,T2,…,T|rmm为根结点的子树。
父节点:每一个节点只有一个前件,无前件的节点只有一个,称为树的根结点(简称树的根)。
子节点:每一个节点可以后多个后件,无后件的节点称为叶子节点。
树的度:所有节点最大的度。
树的深度:树的最大层次。
2.二叉树及其基本性质
二叉树是一种非线性结构,是有限的节点集合,该集合为空(空二叉树)或由一个根节点及两棵互不相交的左右二叉子树组成。可分为满二叉树和完全二叉树,其中满二叉树一定是完全二叉树,但完全二叉树不一定是满二叉树。
二叉树可为空,空的二叉树无节点,非空二叉树有且只有一个根节点;
每个节点最多可有两棵子树,称为左子树和右子树。
3.二叉树的存储结构
二叉树通常采用链式存储结构,存储节点由数据域和指针域(左指针域和右指针域)组成。二叉树的链式存储结构也称二叉链表,对满二叉树和完全二叉树可按层次进行顺序存储。
4.二叉树的遍历
二叉树的遍历是指不重复地访问二叉树中所有节点,主要指非空二叉树,对于空二叉树则结束返回。二叉树的遍历包括前序遍历、中序遍历和后序遍历。
1.1.6查找技术
(1)顺序查找:在线性表中查找指定的元素。
(2)二分查找:线性表必是顺序存储结构,且必是有序表,反复查找直到成功或子表长度为0时结束。
1.1.7排序技术
(1)交换类排序法:借助数据元素的“交换”进行排序,包括冒泡排序法和快速排序法。
(2)插入类排序法:包括简单插入排序法和希尔排序法。
(3)选择类排序法:包括简单选择排序法和推排序法。
1.2程序设计基础
1.2.1程序设计方法与风格
(1)设计方法:程序设计指设计、编制、调试程序的方法和过程,主要有结构化程序设计方法、软件工程方法和面向对象方法。
(2)设计风格:良好的设计风格要注重源程序文档化、数据说明方法、语句的结构和输入输出。
1.2.