python归一化函数_用numpy实现FFT归一化

刚开始使用numpy包,并开始用一个简单的任务来计算输入信号的FFT。代码如下:import numpy as np

import matplotlib.pyplot as plt

#Some constants

L = 128

p = 2

X = 20

x = np.arange(-X/2,X/2,X/L)

fft_x = np.linspace(0,128,128, True)

fwhl = 1

fwhl_y = (2/fwhl) \

*(np.log([2])/np.pi)**0.5*np.e**(-(4*np.log([2]) \

*x**2)/fwhl**2)

fft_fwhl = np.fft.fft(fwhl_y, norm='ortho')

ampl_fft_fwhl = np.abs(fft_fwhl)

plt.bar(fft_x, ampl_fft_fwhl, width=.7, color='b')

plt.show()

因为我处理的是一个指数函数,在它之前用π除以某个常数,所以我希望在Fourier空间中得到指数函数,其中FFT的常数部分总是等于1(零频率)。

但是我使用numpy得到的组件的值更大(大约是1,13)。这里我有一个振幅谱,它被标准化为1/(计数的个数)**0.5(这是我在numpy文档中读到的)。我不明白怎么了。。。有人能帮我吗?

谢谢!

[编辑]问题似乎已经解决了,要得到傅里叶积分和FFT的相同结果,只需要将FFT乘以步长(在我的例子中是X/L)。至于作为numpy.fft.fft(…,norm=”ortho“)选项的规格化,它只用于保存变换的比例,否则需要将逆fft的结果除以采样数。谢谢大家的帮助!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值