刚开始使用numpy包,并开始用一个简单的任务来计算输入信号的FFT。代码如下:import numpy as np
import matplotlib.pyplot as plt
#Some constants
L = 128
p = 2
X = 20
x = np.arange(-X/2,X/2,X/L)
fft_x = np.linspace(0,128,128, True)
fwhl = 1
fwhl_y = (2/fwhl) \
*(np.log([2])/np.pi)**0.5*np.e**(-(4*np.log([2]) \
*x**2)/fwhl**2)
fft_fwhl = np.fft.fft(fwhl_y, norm='ortho')
ampl_fft_fwhl = np.abs(fft_fwhl)
plt.bar(fft_x, ampl_fft_fwhl, width=.7, color='b')
plt.show()
因为我处理的是一个指数函数,在它之前用π除以某个常数,所以我希望在Fourier空间中得到指数函数,其中FFT的常数部分总是等于1(零频率)。
但是我使用numpy得到的组件的值更大(大约是1,13)。这里我有一个振幅谱,它被标准化为1/(计数的个数)**0.5(这是我在numpy文档中读到的)。我不明白怎么了。。。有人能帮我吗?
谢谢!
[编辑]问题似乎已经解决了,要得到傅里叶积分和FFT的相同结果,只需要将FFT乘以步长(在我的例子中是X/L)。至于作为numpy.fft.fft(…,norm=”ortho“)选项的规格化,它只用于保存变换的比例,否则需要将逆fft的结果除以采样数。谢谢大家的帮助!