python实现归一化去噪_二维FFT的归一化处理

本文介绍了Python中归一化处理二维FFT以进行去噪的方法,探讨了Parseval定理在空间域和频率域总功率相等的应用。通过示例展示了如何计算不同尺寸数组的总功率和平均功率,并解释了为什么需要除以数组大小来得到平均功率。
摘要由CSDN通过智能技术生成

首先,需要注意的是,这个问题与1D和2D fft之间的差异无关,而是与总功率和平均功率如何随阵列中元素的数量而变化有关。在

当您说9的因子来自a中的元素比b中的元素多9倍时,您说得非常正确。令人困惑的是,你注意到你已经通过除以np.fft.fft2(a)/3000./3000.和{}进行了标准化,事实上,这些规范化对于得到空间和频率域中的总(非平均)功率是相等的是必要的。为了得到平均值,你必须再除以数组的大小。在

你的问题实际上是关于Parseval定理的,它指出两个领域(空间/时间和频率)的总功率是相等的。它的语句,对于DFT是this。注意,尽管右边是1/N,但这不是平均功率,而是总功率。1/N的原因是DFT的规范化约定。在

放在Python中,这意味着对于一个时间/空间信号sig,Parseval等价可以表述为:

np.sum(np.abs(sig)**2) == np.sum(np.abs(np.fft.fft(sig))**2)/sig.size

下面是一个完整的例子,从一些玩具箱开始(一维和二维数组填充一个1),最后是你自己的箱子。注意,我使用了的.size属性努比·恩达雷,返回数组中元素的总数。它相当于你的/1000./1000.等。希望这有帮助!在import numpy as np

print 'simple examples:'

# 1-d, 4 elements:

ones_1d = np.array([1.,1.,1.,1.])

ones_1d_f = np.fft.fft(ones_1d)

# compute total power in space and

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值