点击“机器学习算法与Python实战”,“置顶”公众号
重磅干货,第一时间送达
导读:本文主要介绍PyTorch的一些基础且常用的概念和模块,以及:
为何选择PyTorch。
PyTorch环境的安装与配置。
PyTorch是Facebook团队于2017年1月发布的一个深度学习框架,虽然晚于TensorFlow、Keras等框架,但自发布之日起,其关注度就在不断上升,目前在GitHub上的热度已超过Theano、Caffe、MXNet等框架。
PyTorch 1.0版本推出后,增加了许多新的功能,对原有内容进行了优化,并整合了Caffe2,使用更方便,大大增强了生产性,所以其热度也迅速上升。
PyTorch采用Python语言接口来实现编程,非常容易上手。它就像带GPU的Numpy,与Python一样都属于动态框架。
PyTorch继承了Torch灵活、动态的编程环境和用户友好的界面,支持以快速和灵活的方式构建动态神经网络,还允许在训练过程中快速更改代码而不妨碍其性能,支持动态图形等尖端AI模型的能力,是快速实验的理想选择。
01 为何选择PyTorch?
PyTorch是一个建立在Torch库之上的Python包,旨在加速深度学习应用。它提供一种类似Numpy的抽象方法来表征张量(或多维数组),可以利用GPU来加速训练。由于 PyTorch 采用了动态计算图(Dynamic Computational Graph)结构,且基于tape的Autograd系统的深度神经网络。
其他很多框架,比如TensorFlow(TensorFlow2.0也加入了动态网络的支持)、Caffe、CNTK、Theano等,采用静态计算图。
使用PyTorch,通过一种称为Reverse-mode auto-differentiation(反向模式自动微分)的技术,可以零延迟或零成本地任意改变你的网络的行为。
Torch是PyTorch中的一个重要包,它包含了多维张量的数据结构以及基于其上的多种数学操作。
自2015年谷歌开源TensorFlow以来,深度学习框架之争越来越激烈&