anaconda安装torch_不能更详细的PyTorch环境安装与配置

本文详细介绍了PyTorch的安装配置过程,包括CPU和GPU版本,以及如何在Linux环境下设置。PyTorch作为Facebook发布的深度学习框架,因其动态计算图和Python接口的易用性而受到关注。文章还提到了Jupyter Notebook的配置,便于开发和调试。
摘要由CSDN通过智能技术生成

点击“机器学习算法与Python实战”,“置顶”公众号

重磅干货,第一时间送达98d2f371de419c8ac4705c77c3cd98c5.png

导读:本文主要介绍PyTorch的一些基础且常用的概念和模块,以及:

  1. 为何选择PyTorch。

  2. PyTorch环境的安装与配置。

作者: 吴茂贵 郁明敏 杨本法 李涛 张粤磊 来源:大数据DT(ID:bigdatadt)

a3a9685394463c22262ee2fb45b24ea0.png

PyTorch是Facebook团队于2017年1月发布的一个深度学习框架,虽然晚于TensorFlow、Keras等框架,但自发布之日起,其关注度就在不断上升,目前在GitHub上的热度已超过Theano、Caffe、MXNet等框架。

PyTorch 1.0版本推出后,增加了许多新的功能,对原有内容进行了优化,并整合了Caffe2,使用更方便,大大增强了生产性,所以其热度也迅速上升。

PyTorch采用Python语言接口来实现编程,非常容易上手。它就像带GPU的Numpy,与Python一样都属于动态框架

PyTorch继承了Torch灵活、动态的编程环境和用户友好的界面,支持以快速和灵活的方式构建动态神经网络,还允许在训练过程中快速更改代码而不妨碍其性能,支持动态图形等尖端AI模型的能力,是快速实验的理想选择。

199648dc7e7da11668013679e0750421.png

01 为何选择PyTorch?

PyTorch是一个建立在Torch库之上的Python包,旨在加速深度学习应用。它提供一种类似Numpy的抽象方法来表征张量(或多维数组),可以利用GPU来加速训练。由于 PyTorch 采用了动态计算图(Dynamic Computational Graph)结构,且基于tape的Autograd系统的深度神经网络。

其他很多框架,比如TensorFlow(TensorFlow2.0也加入了动态网络的支持)、Caffe、CNTK、Theano等,采用静态计算图。

使用PyTorch,通过一种称为Reverse-mode auto-differentiation(反向模式自动微分)的技术,可以零延迟或零成本地任意改变你的网络的行为。

Torch是PyTorch中的一个重要包,它包含了多维张量的数据结构以及基于其上的多种数学操作。

自2015年谷歌开源TensorFlow以来,深度学习框架之争越来越激烈&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值