【RE-GCN_2021.04】基于进化表示学习的时态知识图谱推理
预测不完整 KG 缺失事实的知识图谱推理已得到广泛探索。然而,预测未来事实的 Temporal KG (TKG) 推理仍远未解决。预测未来事实的关键是要透彻了解历史事实。 TKG 实际上是对应于不同时间戳的一系列 KG,其中每个 KG 中的所有并发事实都表现出结构依赖性,并且时间上相邻的事实携带信息序列模式。为了有效且高效地捕获这些属性,我们提出了一种基于图形卷积网络 (GCN) 的新型循环进化网络,称为 RE-GCN,它通过对 KG 序列进行循环建模来学习每个时间戳的实体和关系的进化表示。具体来说,对






