所有算式都是实操的记录。
——张益民
Mom always had a way of explaining things so I could understand them.(妈妈总有办法让我明白她的意思。)
—— Forrest Gump(阿甘)
女:爸爸,牛牛同学说乘11可以用“拉面法”速算!
父:什么?拉面法?怎么拉?
女:“两头一拉,中间相加”,你看35×11,把3和5拉开,中间是3和5相加,得385,神奇吧!
父:好神奇啊!那是为啥呢?给我讲讲!
女:嗯,不知道……不过老师还说了一个“头同尾合十”的速算法,
父:“头痛为何事?”,还不是为你写作业头疼?
女:哈哈,不是啦!就是头一个数字相同,末尾的数字相加得十的乘法的速算法,比如 34×36,头都是3,尾巴4+6=10
父:哦,明白了,十位数上相同,个位上数字的和是十的两位数乘法
女:对!
父:怎么个速算法呢?
女:你看啊,把后面这个3加1,得4,在乘前面这个3,得12,再把个位的4×6得24,写在12后面就是1224,快吧?!
父:快!真快!是什么原理呢?
女:不知道……
(能把天聊死的老爹……)
隔日,老爹又搬出了宝石箱:
旁白:宝石王国发现了新的蓝宝石矿(感谢呗吟),第一天就挖出了许多美丽的蓝宝石宝石,矿工们把宝石排成了11行每行23颗,如图:
公主:哇,这蓝宝石真漂亮!还有一行深蓝色的!
国王:真是漂亮,除法公主那里一定能卖得很好!那先请乘法公主帮忙算一算,今天收获了多少颗啊?
公主:深蓝色的一行23颗,浅蓝色的一共10行,23×10就是230颗,一共253颗。(看来上一幕戏没白演,参考《即兴小剧场》)
国王:嗯,那请公主帮忙记录下来吧,
公主:(记录中)
国王:听说有个“拉面法”可以快速的算出宝石的数量,公主能试试吗?(国王还挺潮)
公主:“拉面法”,对哦!“两边一拉,中间相加”,把23的‘2’和‘3’拉开,再用2+3=5,放在‘2’和‘3’中间得 253,(公主边在纸上写着边说,纸上的记录如图,对不住各位,我给这个记录拍照时,已经被弟弟画成这样了)
国王:真的好神奇,那为什么要把2和3拉开呢?
公主:为了放下5啊!
国王:哦,那拉开了从个位、十位、百位的
上看,有什么变化?
公主:(思考了一会……)2到了百位,3还是在个位,5放在了十位,(又思考了一会……)看来不是“两边一拉”,而是“把2推到百位”,3在个位并没有动。
国王:嗯嗯,那“中间相加”呢?
公主:指着竖式中间十位上的2和3,这两个都在十位上,所以相加后的5代表5个十,放百位和个位中间,就是“中间相加”。
国王:的确如此!公主看来已经看透了“拉面法”了呢!那从宝石阵里能看出什么呢?
公主:(把宝石阵,重新排布成这样,如图)这一大块,就是20×10,200颗、20袋,2盒,就是百位上的2;这3颗就是个位上的3.
公主:(指着图中左下和右上的两块说)把这30颗和这20颗相加得50颗,是5袋,就是中间(十位)的5。
国王,(指着深蓝色的的20颗说)可不可以把这20颗移到30颗边上,让他们挨在一起?
公主:好,(把20颗深蓝色的移动到如图位置)这样更清晰了。
国王:那请公主记录一下吧。
公主:(记录中)
隔日……
带领公主不摆宝石、回顾这个过程并整理记录(略)
整理记录完毕,国王拿出网格纸(感谢平平老师,让我发现网格纸这个利器,大的两位数乘法摆宝石实在是辛苦),如图:
国王:最近国事繁忙,没能带公主去矿场,今天矿工长,将采得得宝石画成了方格图,每个格子里放一块宝石、公主来帮我看看,这上面写着37×11,今天收获了多少颗宝石啊(注意中间相加有进位)。
公主:好的!(在方格图上分割如下)
公主:最大这块30×10是300颗,3盒,所以百位上是3,这里面的70颗和30颗相加刚好够了100颗,凑了一盒,所以百位要加一变成4了,我来挪一下。(剪裁移动如下:)
国王:这样清楚多了!看来中间相加可能会有进位呢,会不会进位是2呢?
公主:想了想说,不会的,最多是9+9 = 18,进位最多是1。
国王:原来如此!
公主整理记录如下:
隔日……
带领公主不摆不画图、回顾37×11后,
国王:今天矿工长送来的宝石阵图是这样的,23×27,有劳乘法公主帮我统计一下吧。
公主:这个就是“头同尾合十”啊,2+1=3,2×3=6,加上3×7=21,就是621.
国王:好快啊!那是怎么个道理呢?
公主:(对着方格图,分割着,得到下图)
公主:这个小块就是3×7=21就是十位和个位,这个大块是20×20=400颗,嗯……这两块(紫色和黄色)加起来是10×20=200颗。 哦!400+200=600,是6盒,6就是这么来的。
国王:可是你的描绘的过程中,我看到了3×7= 21,我没看到2×3=6啊?
公主:(思考了一会,把3×20(黄色)移到了7×20(紫色)旁边,)这个和“拉面法”有点像。看!(指着图中蓝紫黄合起来的一大块)原来有20个20(蓝色),这紫色黄色、两块加起来,7个20和3个20又凑出了10个20,现在就有30个20,是20×30,就是十位上的2×3;600个!
国王:哈哈,有意思,有意思!看来“头同尾合十”的速算法可以这么解释啊!请你把她记录下来吧!
公主记录中。
后记:
“拉面法”和“头同尾合十”是苏教版《数学》三年级下课本里的两种速算方式,女儿虽然掌握了速算技巧,可是对原理却并不了解,本文试图利用前面带她玩过的宝石游戏,解释两种速算法的计算原理,都是野路子,如有不妥之处,还望各位老师不吝赐教。
订正:
在《即兴小剧场——玩转两位数乘两位数竖式运算》发表之后,很多老师给了中肯细致的建议,其中田岚老师指出文中的图并没有与17X13的竖式直接对应,并提供了参考图,如图:
这是我的疏忽,在此向大家致歉,并补充图如下!
另外田老师和林然老师都指出,17×10(两位数乘整十数)从实操到算式的过程没有在文中展示出来;林然老师还建议我们通过唱数练习将17×10视为一整块,这些是都是极有价值的建议,这些天我们爷俩都会通过抛接杂耍球来巩固10的倍数的唱数。再次对两位老师表示诚挚的谢意!