基础用法
multiprocessing创建的子进程拿不到返回值,可以通过进程间通信,从Queue里面取
如果需要返回值,用from concurrent.futures import ProcessPoolExecutor
由于GIL锁的存在,python CPU密集型计算并不能充分利用cpu性能,如果需要提高性能,可以考虑用lupa模块,执行lua代码来提高效率,居测试,性能可以提高30倍以上,懂c的可以用ctypes 模块执行c程序提高性能
from multiprocessing import Process
import os
# 子进程要执行的代码
def run_proc(name):
print(name)
if __name__=='__main__':
p = Process(target=run_proc, args=('test',)) #创建一个进程
p1 = Process(target=run_proc, args=('test1',))
p.start() #执行进程
p1.start()
p.join() #join()方法可以等待子进程结束后再继续往下运行,通常用于进程间的同步
p1.join()
进程池
如果要启动大量的子进程,可以用进程池的方式批量创建子进程:
from multiprocessing import Pool
import os, time, random
def long_time_task(name):
start = time.time()
time.sleep(1)
end = time.time()
if __name__=='__main__':
p = Pool(4) # 进程数,默认大小是CPU的核数
for i in range(8): #添加进程后立即执行
p.apply_async(long_time_task, args=(i,)) #非阻塞,4条进程同时执行
# p.apply(long_time_task, args=(i,)) #阻塞,4个进程一条一条执行
p.close()
p.join()
进程间通信
from multiprocessing import Process, Queue
import os, time, random
# 写数据进程执行的代码:
def write(q):
for value in ['A', 'B', 'C']:
q.put(value)
# 读数据进程执行的代码:
def read(q):
while True:
value = q.get(True)
if __name__=='__main__':
# 父进程创建Queue,并传给各个子进程:
q = Queue()
pw = Process(target=write, args=(q,))
pr = Process(target=read, args=(q,))
# 启动子进程pw,写入:
pw.start()
# 启动子进程pr,读取:
pr.start()
# 等待pw结束:
pw.join()
# pr进程里是死循环,无法等待其结束,只能强行终止:
pr.terminate()