I'm desperately searching for an efficient way to check if two 2D numpy Arrays intersect.
So what I have is two arrays with an arbitrary amount of 2D arrays like:
A=np.array([[2,3,4],[5,6,7],[8,9,10]])
B=np.array([[5,6,7],[1,3,4]])
C=np.array([[1,2,3],[6,6,7],[10,8,9]])
All I need is a True if there is at least one vector intersecting with another one of the other array, otherwise a false. So it should give results like this:
f(A,B) -> True
f(A,C) -> False
I'm kind of new to python and at first I wrote my program with Python lists, which works but of course is very inefficient. The Program takes days to finish so I am working on a numpy.array solution now, but these arrays really are not so easy to handle.
Here's Some Context about my Program and the Python List Solution:
What i'm doing is something like a self-avoiding random walk in 3 Dimensions. http://en.wikipedia.org/wiki/Self-avoiding_walk. But instead of doing a Random walk and hoping that it will reach a desirable length (e.g. i want chains build up of 1000 beads) without reaching a dead end i do the following:
I create a "flat" Chain with the desired length N:
X=[]
for i in range(0,N+1):
X.append((i,0,0))
Now i fold this flat chain:
randomly choose one of the elements ("pivotelement")
randomly choose one direction ( either all elements to the left or to the right of the pivotelment)
randomly choose one out of 9 possible rotations in space (3 axes * 3 possible rotations 90°,180°,270°)
rotate all the elements of the chosen direction with the chosen rotation
Check if the new elements of the chosen direction intersect with the other direction
No intersection -> accept the new configuration, else -> keep the old chain.
Steps 1.-6. have to be done a large amount of times (e.g. for a chain of length 1000, ~5000 Times) so these steps have to be done efficiently. My List-based solution for this is the following:
def PivotFold(chain):
randPiv=random.randint(1,N) #Chooses a random pivotelement, N is the Chainlength
Pivot=chain[randPiv] #get that pivotelement
C=[] #C is going to be a shifted copy of the chain
intersect=False
for j in range (0,N+1): # Here i shift the hole chain to get the pivotelement to the origin, so i can use simple rotations around the origin
C.append((chain[j][0]-Pivot[0],chain[j][1]-Pivot[1],chain[j][2]-Pivot[2]))
rotRand=random.randint(1,18) # rotRand is used to choose a direction and a Rotation (2 possible direction * 9 rotations = 18 possibilitys)
#Rotations around Z-Axis
if rotRand==1:
for j in range (randPiv,N+1):
C[j]=(-C[j][1],C[j][0],C[j][2])
if C[0:randPiv].__contains__(C[j])==True:
intersect=True
break
elif rotRand==2:
for j in range (randPiv,N+1):
C[j]=(C[j][1],-C[j][0],C[j][2])
if C[0:randPiv].__contains__(C[j])==True:
intersect=True
break
...etc
if intersect==False: # return C if there was no intersection in C
Shizz=C
else:
Shizz=chain
return Shizz
The Function PivotFold(chain) will be used on the initially flat chain X a large amount of times. it's pretty naivly written so maybe you have some protips to improve this ^^ I thought that numpyarrays would be good because i can efficiently shift and rotate entire chains without looping over all the elements ...
解决方案
This should do it:
In [11]:
def f(arrA, arrB):
return not set(map(tuple, arrA)).isdisjoint(map(tuple, arrB))
In [12]:
f(A, B)
Out[12]:
True
In [13]:
f(A, C)
Out[13]:
False
In [14]:
f(B, C)
Out[14]:
False
To find intersection? OK, set sounds like a logical choice.
But numpy.array or list are not hashable? OK, convert them to tuple.
That is the idea.
A numpy way of doing involves very unreadable boardcasting:
In [34]:
(A[...,np.newaxis]==B[...,np.newaxis].T).all(1)
Out[34]:
array([[False, False],
[ True, False],
[False, False]], dtype=bool)
In [36]:
(A[...,np.newaxis]==B[...,np.newaxis].T).all(1).any()
Out[36]:
True
Some timeit result:
In [38]:
#Dan's method
%timeit set_comp(A,B)
10000 loops, best of 3: 34.1 µs per loop
In [39]:
#Avoiding lambda will speed things up
%timeit f(A,B)
10000 loops, best of 3: 23.8 µs per loop
In [40]:
#numpy way probably will be slow, unless the size of the array is very big (my guess)
%timeit (A[...,np.newaxis]==B[...,np.newaxis].T).all(1).any()
10000 loops, best of 3: 49.8 µs per loop
Also the numpy method will be RAM hungry, as A[...,np.newaxis]==B[...,np.newaxis].T step creates a 3D array.