开发环境的搭建是一件入门比较头疼的事情,在上期的文稿基础上,增加一项Anaconda的安装介绍。Anaconda是Python的一个发行版本,安装好了Anaconda就相当于安装好了Python,并且里面还集成了很多Python科学计算的第三方库。比如我们需要用到的Pandas、numpy、dateutil等等,高达几百种。因此,安装了Anaconda,就不需要再专门的一个个安装第三方库。只要在使用Pycharm时调用Anaconda环境,便可以方便的使用其中的各种库。且各个库之间的依赖性很好,对于我们来讲可以大大简化安装流程。
其实在Windows下安装Python、Anaconda和pandas都比较简单,Python只需要去Python的网站下载下来安装包,然后下一步下一步这么点下去就好了,而pandas呢只要安装Pycharm这个工程软件,就可以了。这里简单介绍一下pandas,pandas是Python下面的一个package,专门用于金融数据的分析,是非常好用的金融分析工具,深入学习pandas,你就知道pandas简直就是为金融分析而量身定做,下边网页是pandas的简单入门介绍http://pandas.pydata.org/pandas-docs/stable/10min.html
下面主要介绍的内容:
1.Python的安装
2.Pycharm的安装、创建、运行Python程序
3.pandas的安装
4.补充Anaconda的安装
*这里因为写作时间的原因,才写成了这个顺序,正确的安装顺序请调整为1→4→2(如果装了第4步,就应该不需要看第3步)。
1.Python安装
从Python官网( https://www.python.org &