python快速排序算法思路_python实现·十大排序算法之快速排序(Quick Sort)

简介

快速排序(Quick Sort)是对冒泡排序的一种改进,其的基本思想:选一基准元素,依次将剩余元素中小于该基准元素的值放置其左侧,大于等于该基准元素的值放置其右侧;然后,取基准元素的前半部分和后半部分分别进行同样的处理;以此类推,直至各子序列剩余一个元素时,即排序完成(类比二叉树的思想)。

算法实现步骤

首先设定一个分界值(pivot),通过该分界值将数组分成左右两部分。

将大于或等于分界值的数据集中到数组右边,小于分界值的数据集中到数组的左边。此时,左边部分中各元素都小于或等于分界值,而右边部分中各元素都大于或等于分界值,这个称为分区(partition)操作。

然后,左边和右边的数据可以独立排序。对于左侧的数组数据,又可以取一个分界值,将该部分数据分成左右两部分,同样在左边放置较小值,右边放置较大值。右侧的数组数据也可以做类似处理。

重复上述过程,通过递归(recursive)将左侧部分排好序后,再递归排好右侧部分的顺序。当左、右两个部分各数据排序完成后,整个数组的排序也就完成了。

Python 代码实现# quick_sort 代码实现

def partition(arr: List[int], low: int, high: int):

pivot, j = arr[low], low

for i in range(low + 1, high + 1):

if arr[i] <= pivot:

j += 1

arr[j], arr[i] = arr[i], arr[j]

arr[low], arr[j] = arr[j], arr[low]

return j

def quick_sort_between(arr: List[int], low: int, high: int):

if high-low <= 1: # 递归结束条件

return

m = partition(arr, low, high) # arr[m] 作为划分标准

quick_sort_between(arr, low, m - 1)

quick_sort_between(arr, m + 1, high)

def quick_sort(arr:List[int]):

"""

快速排序(in-place)

:param arr: 待排序的List

:return: 快速排序是就地排序(in-place)

"""

quick_sort_between(arr,0, len(arr) - 1)

# 测试数据

if __name__ == '__main__':

import random

random.seed(54)

arr = [random.randint(0,100) for _ in range(10)]

print("原始数据:", arr)

quick_sort(arr)

print("快速排序结果:", arr)

# 输出结果

原始数据: [17, 56, 71, 38, 61, 62, 48, 28, 57, 42]

快速排序结果: [17, 28, 38, 42, 48, 56, 57, 61, 62, 71]

动画演示

算法分析

时间复杂度

快速排序最优的情况就是每一次取到的元素都刚好平分整个数组,此时的时间复杂度公式则为:

$$

T\left[ n \right] =2T\left[ \dfrac{n}{2} \right] \ +\ f\left( n \right)

$$

$T\left[ n \right] $为平分后的子数组的时间复杂度,$f\left( n \right) $为平分这个数组时所花的时间;

则有:

$$

\begin{align}

T\left[ n \right] &=2T\left[ \dfrac{n}{2} \right] +n &\text{第1次递归}n=n\

&=2^2T\left[ \dfrac{n}{2^2} \right] +2n &\text{第2次递归}n=\dfrac{n}{2}\

& =2^3T\left[ \dfrac{n}{2^3} \right] +3n &\text{第3次递归}n=\dfrac{n}{2^2}\

&\cdots \cdots \

&=2^mT\left[ \dfrac{n}{2^m} \right] +mn &\text{第m次递归}n=\dfrac{n}{2^m}

\end{align}

$$

当最后平分的不能再平分时有:

$$

\begin{align}

&T\left[ \dfrac{n}{2^m} \right] =T\left[ 1 \right]

\ \Rightarrow &\frac{n}{2^m}=1

\ \Rightarrow &m=\log _2n

\ \Rightarrow &T\left[ n \right] =n+n\log _2n=O(nlog_2n)

\end{align}

$$

快速排序最优的情况下时间复杂度为:$O\left( n\log _2n \right)$

最差的情况就是每一次取到的元素就是数组中最小/最大值,这种情况其实就是冒泡排序了(每一次都排好一个元素的顺序),这种情况时间复杂度就是冒泡排序的时间复杂度:

$$

T\left[ n \right] =n\left( n-1 \right) =n^2+n=O\left( n^2 \right)

$$

快速排序最差的情况下时间复杂度为:$O(n^2)$

快速排序的平均时间复杂度也是:$O\left( n\log _2n \right)$

空间复杂度

首先就地快速排序使用的空间是$O(1)$的,也就是个常数级。真正消耗空间的就是递归调用了,因为每次递归就要保持一些数据。

最优的情况是每一次都平分数组,空间复杂度为:$O(log_2n)$ ;

最差的情况是退化为冒泡排序,空间复杂度为:$O(n)$;

稳定性

排序过程中,相同的元素无法保证相对位置不变,因此快速排序属于不稳定排序。

综合分析

联系我们

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值