深度学习图像的中心化和标准化

本文探讨了深度学习中图像预处理的两个关键步骤:中心化和标准化。中心化通过减去图像平均值实现零均值化,有助于避免梯度更新时的局部最优情况。标准化则涉及减去平均值后再除以标准差,使数据符合标准正态分布,尤其在处理尺度不一的输入数据时,能加速收敛并提高精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

中心化

中心化就是零均值化,对于每一个元素减去本图像的平均值即可。

E(X-E(X))=0

这样做的意义在于,对于某些激活函数,比如sigmoid,relu,tanh而言,激活函数单调递增,其任意一点导数均大于零。

而f关于wi的偏导数为xi,如果xi均为正数(或者负数),那么

其正负等同于xi的正负,也就是必然是正数(或者零)。

那么如果想要使得loss函数减小,朝着的方向运动的话,就会出现只能朝着每一个wi的正方向或者负方向运动的情况。如果有n个wi的向量,则有2^n个象限,除非最优化wi就在全为正的第一象限,否则优化本身必然比较曲折。假设二维,如下图所示

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值