最小生成树实验报告c语言,最小生成树(C语言, prim算法)

图(来源:<>p250)

557e71fceac4e2a3d71166aa02b22dff.png

#include

#include

#include

/*

* 邻接矩阵, prim普里姆算法(属贪婪算法),无向图,最小生成树

* 代码实现<>p250 图7-6-6,v0至v8分别用ABCDEFGHI代替(不过打印过程还是用的下标)

* 最终成生n-1条边的树,路径权值和最小

*/

#define MAX 9

#define INFINITY 65535

// 图结构体

typedef struct {

char vexs[MAX]; // 顶点的数组,顶点类型为了简单使用char

int arc[MAX][MAX]; // 边表二维数组,值为权

int numVex;

}GRAPH, *PGRAPH;

void create(PGRAPH);

void gprint(GRAPH);

void prim(GRAPH);

void prim(GRAPH graph)

{

int i, j, k, min;

// 保存相关节点的数组(也可叫作父子(前后)关系,下标为当前节点,值为前一个节点,形成1条边)

int adjVex[MAX];

// 保存节点相关的边的最小权值(这个是随着程序不断迭代而更新的)

int lowcost[MAX];

// 循环处理前的初始化工作

adjVex[0] = 0; // 以第1个顶点为开头,直接加入v0节点

lowcost[0] = 0; // v0节点不需要再计算权值,标识为0,0还有个意思表示该节点已经加入最小生成树

// 使用v0节点相关的数据,初始化上面2个数组

for (i=0; i

//先全部初始化为0,表示所有节点的前1个节点都先为v0

adjVex[i] = 0;

// v0节点相关的边权值加入数组,因为入口是v0节点,这些是目前可以看到的相关的边

lowcost[i] = graph.arc[0][i];

}

/*

* 开始循环处理,次数为n-1,n为节点数

*/

// v0入口节点已经加入过数组不需要处理,所以从1开始

for (i=1; i

// 每轮都需要计算当前未加入最小生成树中的节点相关的最小权的边

int min = INFINITY;

// 先在lowcost数组中找出当前可以看到的边中,权值最小的那条边

for (j=1; j

if (lowcost[j] !=0 && lowcost[j] < min) {

min = lowcost[j];

k = j;

}

}

// 新找到的最小权值的边的相关节点为新查找根节点,标识为0,放入最小生成树

lowcost[k] = 0;

printf("%d->%d\n", adjVex[k], k); //adjVex可以知道相关节点前后关系

// 把符合条件的与新根节点(行)有关的边、节点信息更新到数组,供下一轮查找

for (j=1; j

if (lowcost[j] != 0 && graph.arc[k][j] < lowcost[j]) {

lowcost[j] = graph.arc[k][j];

adjVex[j] = k; // 只要找到的更新其前节点为k;

}

}

}

}

void create(PGRAPH g)

{

int i, j;

g->numVex = 9;

// 创建顶点

g->vexs[0] = 'A';

g->vexs[1] = 'B';

g->vexs[2] = 'C';

g->vexs[3] = 'D';

g->vexs[4] = 'E';

g->vexs[5] = 'F';

g->vexs[6] = 'G';

g->vexs[7] = 'H';

g->vexs[8] = 'I';

// 初始化边表

for (i=0; inumVex; i++) {

for (j=0; jnumVex; j++) {

g->arc[i][j] = INFINITY;

if (j == i)

g->arc[i][j] = 0; //行列相等时表示自身,标识为0

}

}

// 添加边及权值

// A v0, B v1, C v2, D v3, E v4, F v5, G v6, H v7, I, v8

g->arc[0][1] = 10;

g->arc[1][0] = 10;

g->arc[0][5] = 11;

g->arc[5][0] = 11;

g->arc[1][2] = 18;

g->arc[2][1] = 18;

g->arc[1][8] = 12;

g->arc[8][1] = 12;

g->arc[1][6] = 16;

g->arc[6][1] = 16;

g->arc[2][8] = 8;

g->arc[8][2] = 8;

g->arc[2][3] = 22;

g->arc[3][2] = 22;

g->arc[3][8] = 21;

g->arc[8][3] = 21;

g->arc[3][6] = 24;

g->arc[6][3] = 24;

g->arc[3][7] = 16;

g->arc[7][3] = 16;

g->arc[3][4] = 20;

g->arc[4][3] = 20;

g->arc[4][7] = 7;

g->arc[7][4] = 7;

g->arc[4][5] = 26;

g->arc[5][4] = 26;

g->arc[5][6] = 17;

g->arc[6][5] = 17;

g->arc[6][7] = 19;

g->arc[7][6] = 19;

}

void gprint(GRAPH graph)

{

int i, j;

for (i=0; i

for (j=0; j

printf("%6d ", graph.arc[i][j]);

}

putchar('\n');

}

}

int main(void)

{

GRAPH graph;

create(&graph);

gprint(graph);

prim(graph);

return 0;

}

output

[root@8be225462e66 c]# gcc prim.c && ./a.out

0 10 65535 65535 65535 11 65535 65535 65535

10 0 18 65535 65535 65535 16 65535 12

65535 18 0 22 65535 65535 65535 65535 8

65535 65535 22 0 20 65535 24 16 21

65535 65535 65535 20 0 26 65535 7 65535

11 65535 65535 65535 26 0 17 65535 65535

65535 16 65535 24 65535 17 0 19 65535

65535 65535 65535 16 7 65535 19 0 65535

65535 12 8 21 65535 65535 65535 65535 0

0->1

0->5

1->8

8->2

1->6

6->7

7->4

7->3

[root@8be225462e66 c]#

标签:prim,16,MAX,C语言,vexs,算法,arc,65535,节点

来源: https://blog.51cto.com/sndapk/2700196

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值