triplet loss后面不收敛_人脸识别的几个常用loss

本文探讨了人脸识别中各类Softmax-based Loss函数的发展历程,包括Softmaxloss、Centerloss、L-Softmaxloss、AngularSoftmax (A-Softmaxloss)、AM-Softmaxloss及ArcFace等,并对比了它们的核心思想和技术特点。

25e6a982db70510e6816b35f5855e803.png

Softmax loss

Center loss (很少用了)

核心思想:提出了center loss以最小化类内距离,与softmax loss联合训练

db464e47003a627aa21034be45655d50.png

24d376527c13ce7a3793f456e7c6ea17.png

L-Softmax loss 作者:北大Weiyang Liu

Large-Margin Softmax Loss for Convolutional Neural Networks​arxiv.org

核心思想:我理解就是一种class-aware的softmax loss,softmax loss的值与类别相关。对不同类别的loss通过m施加margin。ψ(θ)函数的构造比较巧妙。

71bf3068d6f8187abfcd6af9fdbfa5a7.png

1404fd47dedfe30b3594af4942ac51e7.png

Angular Softmax(A-Softmax loss) 作者:北大Weiyang Liu

SphereFace: Deep Hypersphere Embedding for Face Recognition​arxiv.org

核心思想:在L-Softmax loss的基础上将W归一化了。由于SphereFace的margin以乘积的形式施加在theta上,导致target logit curve变化比较剧烈,使训练不太稳定,

c3472585a7619d48699fa1001ab1c0f7.png

因此实际上训练时使用的hybrid loss的形式(增加了softmax loss来辅助)。如下图中截取的代码段中的beta,beta初始化为1000,训练过程逐渐衰减到不小于5。

可见beta的值其实比较大,在训练过程中事实上softmax loss domintates了。

fc3602bba84ca375bef1480dd472d6c0.png

AM-Softmax loss

两篇文献几乎同时提出了AM-Softmax loss:

CosFace: Large Margin Cosine Loss for Deep Face Recognition (腾讯AI Lab的Hao Wang等CVPR2018)

Additive Margin Softmax for Face Verification (Weiyang Liu二作)

核心思想:之前L-Softmax loss和A-Softmax为了加一个margin构造分段函数的方法太复杂了,这里直接把margin加到余弦值后面。

d0e6903fa5b18f9bc5092eff300fc0a9.png

ArcFace(的loss) 作者:伦敦帝国理工学院邓建康

ArcFace: Additive Angular Margin Loss for Deep Face Recognition​arxiv.org

核心思想:直接在角度上加margin约束

2ee7f96c404c20371a21eb39b7e8727c.png

总结表格:

f087021a4f7caa977cc3eb58acdd8325.png

combined margin

来自arcface的开源库insightface

c086f95f327ac4e38b101fd92c362c83.png

ref:

https://zhuanlan.zhihu.com/p/38855840

人脸识别中Softmax-based Loss的演化史

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值