coco数据集大小分类_目标检测数据集MSCOCO简介

本文介绍了目标检测数据集MS COCO,包括其构建目的、与PASCAL VOC的对比、数据统计信息、评估标准。COCO数据集具有复杂的背景、多个目标实例和小目标,平均每个图片3.5个类别和7.7个实例,且评估标准严格,是衡量模型性能的重要基准。
摘要由CSDN通过智能技术生成

简介

介绍一下目标检测领域另外一个比较有名的数据集 MS COCO (Microsoft COCO: Common Objects in Context) .

MSCOCO 数据集是微软构建的一个数据集,其包含 detection, segmentation, keypoints等任务。

MSCOCO主要是为了解决detecting non-iconic views of objects(对应常说的detection), contextual reasoning between objects and the precise 2D localization of objects(对应常说的分割问题) 这三种场景下的问题。

下面是iconic 图片和 non-iconic 图片之间的对比。

与PASCAL COCO数据集相比,COCO中的图片包含了自然图片以及生活中常见的目标图片,背景比较复杂,目标数量比较多,目标尺寸更小,因此COCO数据集上的任务更难,对于检测任务来说,现在衡量一个模型好坏的标准更加倾向于使用COCO数据集上的检测结果。

数据集的构建过程不说了。主要关注一下统计信息

1 统计信息

MSCOCO总共包含91个类别,每个类别的图片数量如下:

图中也标出了PASCAL VOC的统计数据作为对比。

下图展示的是几个不同数据集的总类别数量,以及每个类别的总实例数量,一个实例就是图片上的一个目标,主要关注一下 PASCAL 和 ImageNet。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值