模糊rbf神经网络基于c语言,基于神经网络的交流伺服系统的智能研究

该文结合神经网络理论和CSCAD技术,开发了一个基于Windows的机电神经控制仿真软件,具备直观操作和一体化训练仿真功能。文章探讨了神经网络的相关理论,并提出模型抽取法选择网络输入输出量。通过三种神经控制器模式的测试,验证了神经控制器的非线性辨识、自学习、自适应和鲁棒性能力,同时也指出其精度与鲁棒性之间的矛盾。
摘要由CSDN通过智能技术生成

摘要:

该文首先,综合神经网络理论和CSCAD技术的最新进展,运用VB语言和C语言联合开发了一个基于Windows图形界面通用型机电神经控制仿真软件包.该软件具有完善的服务功能,全新的多窗口外观和直观的"拖放"操作机制,结构定义,训练仿真可实现一体化解决.同时,对神经网络的方法、学习算法、网络结构的定义、初值的定义、学习参数的选择、以及导入导出规则的建立等神经理论问题进行了深入讨论.其次,通过对永磁电机模型的分析,提出了一种网络输入输出量的选取方法--模型抽取法,并对此方法进行了详细的理论推导和讨论.然后,给出了三种神经控制器模式:在线逆动态... 展开 该文首先,综合神经网络理论和CSCAD技术的最新进展,运用VB语言和C语言联合开发了一个基于Windows图形界面通用型机电神经控制仿真软件包.该软件具有完善的服务功能,全新的多窗口外观和直观的"拖放"操作机制,结构定义,训练仿真可实现一体化解决.同时,对神经网络的方法、学习算法、网络结构的定义、初值的定义、学习参数的选择、以及导入导出规则的建立等神经理论问题进行了深入讨论.其次,通过对永磁电机模型的分析,提出了一种网络输入输出量的选取方法--模型抽取法,并对此方法进行了详细的理论推导和讨论.然后,给出了三种神经控制器模式:在线逆动态控制器,离线逆动态控制器和MRAC神经控制,并基于SNNS对三种控制器分别进行了动稳态测试,跟踪测试及抗扰测试,验证了神经控制器的非线性辨识能力、自学习能力、自适应能力及强鲁棒性能力,同时指出了神经控制器的精度与鲁棒性间的矛盾. 收起

展开

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值