图书借阅推荐系统算法的
python
实现
谭立云
刘
琳
苏
鹏
【摘
要】
本文对协同过滤算法中最常用的基于用户的协同过滤算法和基于物品
的协同过滤算法进行了描述,然后针对图书借阅推荐系统实例进行了算法的
pyhton
实现代码,并对这两种算法进行了评价,对于实际工作者具有较好的
参考价值。
【期刊名称】
黑龙江科技信息
【年
(
卷
),
期】
2018(000)022
【总页数】
2
【关键词】
python
基于用户的协同过滤算法基于物品的协同过滤算法
在进行推荐系统设计时我们主要有两种推荐方式,分别是基于用户的协同过滤
算法和基于物品的协同过滤算法。
基于用户的协同过滤算法的基本思想是:“人以类聚”,即兴趣相同的用户往
往有相同的喜好。当目标用户需要个性化推荐时,可以先找到和目标用户有相
似兴趣的用户群体,然后把这个群体喜欢的,而目标用户没有的物品推荐给目
标用户。
基于物品的协同过滤算法是给目标用户推荐那些和他们之前喜欢的物品相似的
物品。这里物品的相似性主要是通过用户的行为记录来计算物品之间的相似度。
下面我们在开发在图书推荐系统中,分别谈谈“基于用户的协同过滤算法”和
“基于物品的协同过滤算法”的
pthon
实现过程和步骤。
1
基于用户的协同过滤算法
实现该算法的关键步骤是计算用户与用户之间的兴趣相似度。目前使用较多的