python自带rbf函数吗_径向基函数(RBF)神经网络

RBF网络能够逼近任意的非线性函数,可以处理系统内的难以解析的规律性,具有良好的泛化能力,并有很快的学习收敛速度,已成功应用于非线性函数逼近、时间序列分析、数据分类、模式识别、信息处理、图像处理、系统建模、控制和故障诊断等。

简单说明一下为什么RBF网络学习收敛得比较快。当网络的一个或多个可调参数(权值或阈值)对任何一个输出都有影响时,这样的网络称为全局逼近网络。由于对于每次输入,网络上的每一个权值都要调整,从而导致全局逼近网络的学习速度很慢。BP网络就是一个典型的例子。

如果对于输入空间的某个局部区域只有少数几个连接权值影响输出,则该网络称为局部逼近网络。常见的局部逼近网络有RBF网络、小脑模型(CMAC)网络、B样条网络等。

径向基函数解决插值问题

完全内插法要求插值函数经过每个样本点,即

。样本点总共有P个。

RBF的方法是要选择P个基函数,每个基函数对应一个训练数据,各基函数形式为

,由于距离是径向同性的,因此称为径向基函数。||X-Xp||表示差向量的模,或者叫2范数。

基于为径向基函数的插值函数为:

输入X是个m维的向量,样本容量为P,P>m。可以看到输入数据点Xp是径向基函数φp的中心。

隐藏层的作用是把向量从低维m映射到高维P,低维线性不可分的情况到高维就线性可分了。

将插值条件代入:

写成向量的形式为

,显然Φ是个规模这P对称矩阵,且与X的维度无关,当Φ可逆时,有

对于一大类函数,当输入的X各不相同时,Φ就是可逆的。下面的几个函数就属于这“一大类”函数:

1)Gauss(高斯)函数

2)Reflected Sigmoidal(反常S型)函数

3)Inverse multiquadrics(拟多二次)函数

σ称为径向基函数的扩展常数,它反应了函数图像的宽度,σ越小,宽度越窄,函数越具有选择性。

完全内插存在一些问题:

1)插值曲面必须经过所有样本点,当样本中包含噪声时,神经网络将拟合出一个错误的曲面,从而使泛化能力下降。

由于输入样本中包含噪声,所以我们可以设计隐藏层大小为K,K

2)基函数个数等于训练样本数目,当训练样本数远远大于物理过程中固有的自由度时,问题就称为超定的,插值矩阵求逆时可能导致不稳定。

拟合函数F的重建问题满足以下3个条件时,称问题为适定的:

解的存在性

解的唯一性

解的连续性

不适定问题大量存在,为解决这个问题,就引入了正则化理论。

正则化理论

正则化的基本思想是通过加入一个含有解的先验知识的约束来控制映射函数的光滑性,这样相似的输入就对应着相似的输出。

寻找逼近函数F(x)通过最小化下面的目标函数来实现:

加式的第一项好理解,这是均方误差,寻找最优的逼近函数,自然要使均方误差最小。第二项是用来控制逼近函数光滑程度的,称为正则化项,λ是正则化参数,D是一个线性微分算子,代表了对F(x)的先验知识。曲率过大(光滑度过低)的F(x)通常具有较大的||DF||值,因此将受到较大的惩罚。

直接给出(1)式的解:

权向量

********************************(2)

G(X,Xp)称为Green函数,G称为Green矩阵。Green函数与算子D的形式有关,当D具有旋转不变性和平移不变性时,

。这类Green函数的一个重要例子是多元Gauss函数:

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
RBF(Radial Basis Function,径向函数神经网络是一种用于解决非线性问题的神经网络结构,特别适合于函数逼近和模式识别任务。它可以很好地拟合光滑函数,如余弦函数,因为它能够通过调整中心点和径向函数的宽度来适应不同形状的输入空间。 在Python中,我们可以使用`scikit-learn`库中的`GaussianProcessRegressor`或者一些专门的深度学习库,如`PyTorch`或`Keras`(虽然它们可能不直接提供RBF神经网络,但可以通过自定义层实现类似功能),来构建和训练RBF网络来拟合余弦函数。以下是一个简单的步骤概述: 1. 导入必要的库: ```python import numpy as np from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.gaussian_process.kernels import RBF, WhiteKernel ``` 2. 定义余弦函数并生成数据: ```python def cosine_function(x): return np.cos(2 * np.pi * x) # 生成训练数据 x_data = np.linspace(0, 1, 100) # 输入范围 y_data = cosine_function(x_data) # 输出余弦值 ``` 3. 创建RBF模型并训练: ```python # 初始化RBF核 kernel = 1.0 * RBF(length_scale=1.0, length_scale_bounds=(1e-2, 1e2)) \ + WhiteKernel(noise_level=1, noise_level_bounds=(1e-10, 1e+1)) # 创建GPR实例 gp = GaussianProcessRegressor(kernel=kernel, alpha=0.0) # 训练模型 gp.fit(x_data[:, np.newaxis], y_data) ``` 4. 预测和评估: ```python x_test = np.linspace(0, 1, 1000)[:, np.newaxis] y_pred = gp.predict(x_test) ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值