ADC采样滤波算法利用卡尔曼滤波算法详解

1 ADC采样模型 假设ADC采样的值已经为稳定状态,设k+1k+1k+1时刻ADC采样值为Xk+1Xk+1X_{k+1},则kkk时刻ADC采样值为XkXkX_k,假设k+1k+1k+1时刻的采样值为Zk+1Zk+1Z_{k+1},则有: {Xk+1=Xk,Zk+1=Xk+1+δ,δ...

2018-08-16 23:37:00

阅读数 1800

评论数 6

利用FFT分析比较卡尔曼滤波算法、低通滤波算法、滑动平均滤波的频谱

1 卡尔曼滤波 详见博客 https://blog.csdn.net/moge19/article/details/81750731 2 低通滤波 2.1 算法推导 一阶RC滤波器的硬件电路如图: 图中输入电压是Vi,电阻R,电容C,输出电压为Vo。 假设电路的输出阻抗很大(即不带任何...

2019-02-15 21:36:44

阅读数 71

评论数 0

Python实现Mean Shift聚类算法

Mean Shift算法,又称均值聚类算法,聚类中心是通过在给定区域中的样本均值确定的,通过不断更新聚类中心,直到聚类中心不再改变为止,在聚类、图像平滑、分割和视频跟踪等方面有广泛的运用。 Mean Shift向量 对于给定的n维空间RnR^nRn中的m个样本点X(i),i=1,...,mX^...

2018-12-30 22:53:29

阅读数 76

评论数 0

正则化参数估计

正则化参数λ\lambdaλ在径向基函数网络,最小二乘估计和支持向量机的正则化理论中起着核心作用,因此需要一个估计λ\lambdaλ的相当原理性的方法。 先考虑一个非线性回归问题: di=f(xi)+εi,i=1,2,...,Nd_i = f(x_i)+\varepsilon _i,i=1,2...

2018-12-23 22:55:15

阅读数 374

评论数 0

正则化的要点

1、回归 从回归的角度上看,项12∣∣W∣∣2\frac{1}{2}||W||^221​∣∣W∣∣2有一个特定的直观作用,从几何上说,最小代价函数ξ(W)\xi(W)ξ(W)过程中,包含正则化项12∣∣W∣∣2\frac{1}{2}||W||^221​∣∣W∣∣2有利于找到带有好的逼近属性的平坦...

2018-12-20 00:29:11

阅读数 26

评论数 0

正则化最小二乘估计

对于给定的训练样本{xi,di}i=1N\lbrace x_i, d_i\rbrace _{i=1} ^{N}{xi​,di​}i=1N​,最小二乘估计的正则化代价函数由下式定义: ε(w)=12∑i=1N(di−wTXi)2+12λ∣∣w∣∣2 \varepsilon (w) = \frac{...

2018-12-18 00:30:22

阅读数 143

评论数 0

正则化理论(二)

1、正则化网络 每个隐藏单元的激活函数由Green函数定义 (式1)G(x,xi)=exp(−12σi2∣∣x−xi∣∣2)G(x,x_i) = exp(- \frac{1}{2\sigma _i ^2}||x-x_i||^2) \tag {式1}G(x,xi​)=exp(−2σi2​1​∣∣...

2018-12-13 22:54:43

阅读数 20

评论数 0

根植于统计力学的随机方法

1 引言 统计力学的主题围绕对大系统宏观平衡态性质的形式化研究,而系统的每个基本元素遵循力学的微观定律。统计力学的主要目标是从微观元素推导出宏观物体的热力学性质。 系统越有序或者它的概率分布越集中,则熵越小。 2 统计力学 考虑具有许多自由度的物理系统,它可以驻留在大量可能状态中的任何一个...

2018-11-30 23:29:15

阅读数 73

评论数 0

Tornado学习笔记

1 tornado简介 基于Python的Web服务框架和异步网络库,通过利用非阻塞网络 I/O, Tornado可以承载成千上万的活动连接, 完美的实现了长连接,WebSocket,和其他对于每一位用户来说需要长连接的程序。 2 Tornado例程 import tornado.iolo...

2018-11-19 23:43:05

阅读数 32

评论数 0

正则化理论(一)

1 、引言 在监督学习算法中,尽管过程不同,但它们都有一个共同点: 通过样本训练一个网络,对于给定的输入模式给出输出模式,等价于构造一个超平面(即多维映射),用输入模式定义输出模式。 从样本中学习是一个可逆的问题,因为其公式是建立在由相关直接问题的实例中获得的知识之上,后一类问题包含潜在的未...

2018-11-19 22:58:51

阅读数 112

评论数 0

Python实现支持向量机(基于双月数据集)

1、生成数据集 class moon_data_class(object): def __init__(self,N,d,r,w): self.N=N self.w=w self.d=d self.r=r ...

2018-11-09 23:26:44

阅读数 50

评论数 0

Python基于K-均值、RLS算法实现RBF神经网络(神经网络与机器学习 第五章 计算机实验)

1、生成数据集 class moon_data_class(object): def __init__(self,N,d,r,w): self.N=N self.w=w self.d=d self.r=r ...

2018-10-22 20:19:26

阅读数 274

评论数 0

python实现径向基核函数

1、生成数据集(双月数据集) class moon_data_class(object): def __init__(self,N,d,r,w): self.N=N self.w=w self.d=d self.r=r ...

2018-10-20 22:39:35

阅读数 595

评论数 1

Python实现K均值聚类算法

1、加载相应的模块,生成数据集 # coding:utf-8 import numpy as np import pylab as pl import random as rd import imageio import math import random import matplotlib.p...

2018-10-15 22:58:38

阅读数 63

评论数 0

Python实现多层感知器MLP(基于双月数据集)

1、加载必要的库,生成数据集 import math import random import matplotlib.pyplot as plt import numpy as np class moon_data_class(object): def __init__(s...

2018-10-10 23:00:50

阅读数 366

评论数 0

基于双月数据集利用最小二乘法进行分类

1、加载数据集 import numpy as np import matplotlib.pyplot as plt class moon_data_class(object): def __init__(self,N,d,r,w): self.N=N s...

2018-10-04 23:43:05

阅读数 101

评论数 0

最小均方算法二分类(基于双月数据集)

1、生成数据集 import numpy as np import matplotlib.pyplot as plt class moon_data_class(object): def __init__(self,N,d,r,w): self.N=N s...

2018-10-04 23:15:27

阅读数 164

评论数 0

基于双月数据集利用感知层进行分类

1、生成数据集 class moon_data_class(object): def __init__(self,N,d,r,w): self.N=N self.w=w self.d=d self....

2018-10-04 20:48:57

阅读数 163

评论数 0

利用Python生成双月分类数据集

1、定义生成函数(来源于网络) def dbmoon(N=100, d=2, r=10, w=2): N1 = 10*N w2 = w/2 done = True data = np.empty(0) while done: #genera...

2018-10-04 00:30:57

阅读数 211

评论数 0

基于TensorFlow的单层神经网络

1、创建计算会话,导入必要的编程库。 import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from sklearn import datasets sess = tf.Session() 2、加载...

2018-09-24 16:49:22

阅读数 96

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭