- 博客(132)
- 资源 (14)
- 收藏
- 关注

原创 ADC采样滤波算法利用卡尔曼滤波算法详解
1 ADC采样模型假设ADC采样的值已经为稳定状态,设k+1k+1k+1时刻ADC采样值为Xk+1Xk+1X_{k+1},则kkk时刻ADC采样值为XkXkX_k,假设k+1k+1k+1时刻的采样值为Zk+1Zk+1Z_{k+1},则有: {Xk+1=Xk,Zk+1=Xk+1+δ,δ为噪声{Xk+1=Xk,Zk+1=Xk+1+δ,δ为噪声 \begin{cases} X_{k+1} = X...
2018-08-16 23:37:00
32987
17
原创 《信号与系统》这本书到底讲了些什么?
笔者求学阶段,上该门课程时,总晕乎乎头铁不知其所以然,最后糊里糊涂本着过了考试就万事大吉的态度便将相关知识抛至脑后,一晃时间已过去多年。近来适逢新春长假,翻了翻曾经的课本,顿时有所领悟,明白该书所讲的知识乃解决工作各类问题的利器,偶有所感,为此记录,供初学者参考。
2024-02-19 15:59:21
652
原创 使用python tkinter 文本框Text控件index函数时出现的问题
(2)Text.index(“@0,” + str(gui.txt.winfo_height())).split(‘.’)[0]获取文本框内可见最后一行的行号;初步分析可能是因为Text.index()运行时需要开销一定量的资源,容易导致线程奔溃所致。减少调用次数后问题得到解决。发现运行时间增加会导致程序奔溃,后通过鼠标事件触发调用实现相关功能后问题得到解决;(1)Text.index(END)获取最后的行号;
2024-01-23 20:48:42
525
原创 tkinter使用matplotlib实现动态绘图
(3)配置FuncAnimation模块的初始函数和更新函数,在更新函数中返回需要更新的数据,在初始函数里设置显示坐标。在数据获取进程里不断更新self.xdata, self.ydata,即实现动态绘图了。(2)使用matplotlib动画显示模块FuncAnimation。(4)将需要更新的数据定义为全局参数,在其他进程中更新,比如。(1)初始化数据和plot函数。
2024-01-04 17:25:11
1316
原创 RC正弦波振荡电路Ltspice仿真
所谓建立振荡,就是要使电路自激,从而产生持续的振荡,由直流变为交流,由于电路中存在噪声,它的频谱分布很广,其中也包括选频范围内的频率成分,这种微弱的信号,经过放大,通过正负反馈的选频网络,使输出幅度愈来愈大,最后收电路非线性元件的限制,使振荡幅度自动稳定下来。振荡频率:f=1/(2πRC)当适当调整负反馈的强弱,使得放大系数略大于3,器输出波形为正弦波,当放大系数远大于3,则因振幅的增长,致使放大器件工作在非线性区域,波形将产生严重的非线性失真。
2022-11-05 16:56:47
4348
3
原创 基于Python仿真载流圆线圈的磁场分布
1、理论基础R是圆环的半径:x是距离圆环中心的距离:dB=μ0/4π(Icosαdl)/r2dB =μ_0/4π (I cosα dl)/r^2 dB=μ0/4π(Icosαdl)/r2B=(μ0IR2)/(2(x2+R2)(3/2))B=(μ_0 IR^2)/(2(x^2+R^2 )^{(3/2) })B=(μ0IR2)/(2(x2+R2)(3/2))2、算法仿真3、实验结果...
2022-03-25 19:27:27
3860
2
原创 卡尔曼滤波算法详细推导(全网最详细的推导过程)
本文是来源于B站Dr_CAN的视频的学习笔记,有需要详细了解的,可以到B站看相关视频DR_CAN的个人空间1、递归算法例:假设测一段距离,第一次测z_1=50.1mm,第二次测z_2=50.4mm,第三次测z_3=50.2mm,若想得到准确的值,可以计算这几次测量的平均值,据此,可以定义估计真实数据等于平均值,可得到如下公式x^k=1k(x1+x2+⋯xk)\hat{x }_k=\frac{1}{k }(x_1+x_2+⋯x_k )x^k=k1(x1+x2+⋯xk)=1k(x1+x2+
2021-10-23 16:33:34
16796
5
原创 Python 实现FIR带阻滤波器设计
假设有一段10kHz的语言,现需要滤除2~3kHz之间的语言信号,最小衰减不能小于50dB,要求1.5kHz以下,以及3.5kHz以上语言信号基本没衰减;(1)求数字频率指标通带下边频:wpl=2∗π∗fpl/fs=0.4πw_{pl}=2*\pi *f_{pl}/f_s=0.4\piwpl=2∗π∗fpl/fs=0.4π通带上边频:wph=2∗π∗fph/fs=0.6πw_{ph}=2*\pi *f_{ph}/f_s=0.6\piwph=2∗π∗fph/fs=0.6π下阻带上变频:
2021-08-17 16:37:49
3762
4
原创 如何用python画一个动态的红心
1、源码import numpy as npimport matplotlib.pyplot as pltimport mathfrom scipy.fftpack import fft,ifftimport mpl_toolkits.mplot3dfrom decimal import Decimalfrom matplotlib.animation import FuncAnimationplt.figure(1)#x=[-2:.001:2]x = np.linspace(-2,2
2021-08-13 17:55:26
2872
原创 python 实现粒子滤波
1 说明该算法是B站UP主忠厚老实的老王的代码,感兴趣的读者可移步到该处学习,本文只是将其代码用python实现贝叶斯滤波与卡尔曼滤波第十一讲代码2 代码实现import randomimport numpy as npimport matplotlib.pyplot as pltt= list(range(100))x=np.linspace(0,1,100)#x= [0]*100y= [0]*100x[0]=0.1y[0]=0.1**2noise_size = 100noi
2021-04-07 20:25:27
3038
原创 Python 实现巴特沃斯滤波器
1 巴特沃斯滤波设计步骤①归一化处理。即令λ=ω/ωpλ=ω/ω_pλ=ω/ωp②计算阶数,截止频率和通带频率比;ωsω_sωs是阻带截止频率,ωpω_pωp是通带截止频率,δsδ_sδs是阻带应达到的最小衰减λs=ωs/ωpλ_s=ω_s/ω_pλs=ωs/ωpN=log(10(δs/10)−1)logλsN=\frac{\log\sqrt{(10^{(δ_s/10)}-1)}}{logλ_s }N=logλslog(10(δs/10)−1)③构造归一化系统函数H
2021-04-07 20:08:19
14815
19
原创 FIR 带通滤波器参数设计流程
假设有一段10kHz的语言,现需要对2~3kHz之间的语言信号进行提取,要求1.5kHz及3.5kHz以上的频率需要有40dB的衰减1、求数字频率指标通带下边频:wpl=2∗π∗fpl/fs=0.4πw_{pl}=2*\pi *f_{pl}/f_s=0.4\piwpl=2∗π∗fpl/fs=0.4π通带上边频:wph=2∗π∗fph/fs=0.6πw_{ph}=2*\pi *f_{ph}/f_s=0.6\piwph=2∗π∗fph/fs=0.6π下阻带上变频:wsl=2∗π∗fsl
2021-03-30 16:21:45
8946
原创 python 实现动态绘图
代码:import mathimport matplotlib.pyplot as pltimport numpy as npfrom scipy.spatial.transform import Rotation as RotDT = 0.1 # time tick [s]SIM_TIME = 20.0 # simulation time [s]show_animation = Truetime = 0.0 x=np.linspace(0,1,SIM_TIME/DT)i
2021-03-25 20:44:12
638
原创 基于python实现IIR带通滤波器(该文存在问题,仅供读者参考,不能当做学习范例使用)
1、一阶IIR算法def IIR_I(self,input_array,a_weight,b_weight,Scale_Factors): output_array = [] for index_vi in range(0,len(input_array)): xv[0] = xv[1] xv[1] = xv[2] xv[2] = input_array[index_vi]/Scale_Factors
2021-03-18 20:26:40
933
1
原创 基于python仿真RLC谐振电路
1、理论基础LCd2UCdt2+RCdUCdt+Uc=UopL C \frac{d^2{U_C }}{dt^2 }+RC\frac{ dU_C }{dt}+U_c=U_{op}LCdt2d2UC+RCdtdUC+Uc=Uop2、算法略3、结果
2021-02-06 17:01:44
1396
2
原创 基于python 仿真载流圆环的磁场分布
1、理论基础(待续)2、算法实现import numpy as npimport matplotlib.pyplot as plt R=2I0=12mu0=4*np.pi*1e-7C0=mu0/(4*np.pi)N=50x, y = np.meshgrid(np.linspace(-5,5,N), np.linspace(-5,5,N))#x = np.linspace(-3,3,N)#x=linspace(-3,3,N)#y=xtheta0 = n
2021-02-06 16:54:13
2325
原创 基于python 仿真通电导线周围的磁感线
1、理论基础毕奥-萨伐尔定律2、代码import numpy as npimport matplotlibimport matplotlib.pyplot as pltimport mpl_toolkits.mplot3dimport mathfrom scipy.fftpack import fft,ifftfrom decimal import Decimalmatplotlib.rcParams['font.sans-serif'] = ['SimHei']matplotli
2021-01-25 20:59:06
2268
3
原创 Python实现RC高通滤波器
1、一阶RC高通滤波器1.1 电路图(1)微分公式:VO=RC(dVidt−dVOdt)V_O=RC(\frac{dV_i}{dt}-\frac{dV_O}{dt})VO=RC(dtdVi−dtdVO)(2)微分公式离散化Vo(n)=RC/T[Vi(n)−Vi(n−1)]−[Vo(n)−Vo(n−1)]V_o (n)=RC/T {[V_i (n)-V_i (n-1)]-[V_o (n)-V_o (n-1)]}Vo(n)=RC/T[Vi(n)−Vi(n−1)]−[Vo(n)−Vo
2021-01-16 17:10:53
2561
1
原创 基于Python实现粒子滤波
1、建立仿真模型(1)假设有一辆小车在一平面运动,起始坐标为[0,0],运动速度为1m/s,加速度为0.1m/s2m/s^2m/s2,则可以建立如下的状态方程:Y=A∗X+B∗UY=A*X+B*UY=A∗X+B∗UU为速度和加速度的的矩阵U=[10.1]U= \begin{bmatrix} 1 \\ 0.1\\ \end{bmatrix} U=[10.1]X为当前时刻的坐标,速度,加速度X=[xyyawV]X= \begin{bmatrix} x \\ y \\ yaw \\ V \e
2020-11-29 22:54:45
5973
6
原创 基于Python实现扩展卡尔曼滤波算法
1、卡尔曼滤波器定义式的变形(1)新息过程an=yn−bn(x^n∣n−1)a_n = y_n-b_n(\hat x_{n|n-1})an=yn−bn(x^n∣n−1)(2)状态空间(3)表述形式2、实现扩展卡尔曼滤波器的预备步骤(1)阶段1 新矩阵的构建(2) 阶段2 空间模型线性化3、扩展卡尔曼滤波器的实现输入过程:[y1,y2,...,yn][y_1,y_2,...,y_n][y1,y2,...,yn]已知参数:非线性状态向量函数=an(xn)a_n(x_n)an
2020-06-16 00:47:54
4187
原创 图像及其数学与物理学背景(待续)
1 引言1.1 线性矢量空间相关,线性空间之间的映射,存在叠加定理。如果映射是加性的且是单一性的,则称该映射是线性的。1.2狄拉克分布于卷积图像平面上的理想冲击是用狄克尔分布定义的:∫−∞+∞∫−∞+∞δ(x,y)dxdy=1\int _{-\infty}^{+\infty}\int _{-\infty}^{+\infty}\delta(x,y)dxdy =1∫−∞+∞∫−∞+∞δ(x,y)dxdy=1卷积是一个积分,反应一个函数在另一个函数上移动时所重叠的量。2 积分线性变换2.1作为
2020-06-16 00:34:53
295
1
原创 谐振电路Q值的意义
1、Q值等于谐振电路中存储能量与每个周期内消耗的能量的2π倍,Q值越大,意味着相对于存储的能量来说所需付出的能量耗散约束,即谐振电路储能的效率越高;Q=2πWS/WRQ=2π W_S/W_R Q=2πWS/WR2、谐振电路的通频带宽∆f反比与谐振电路的Q值,Q值越大,谐振电路的频率选择性越强;∆f=f0/Q∆f=f_0/Q∆f=f0/Q3、X谐振时电容或者电感上的电压比总电压大Q倍;Q=UC/U=UL/U=(W0L)/RQ=U_C/U=U_L/U=(W_0 L)/RQ=UC/U=UL/U
2020-06-03 15:14:04
13905
1
原创 模式识别(四)特征选择(待续)
4.1引言4.2预处理4.2.1.剔除离群点4.2.2数据归一化4.2.3丢失数据4.3峰值现象4.4基于统计假设检验的特征选择4.5接收机操作特性曲线4.6类可分性测量4.7特征子集的选择4.8最优特征生成4.9神经网络和特征生成/选择4.10推广理论的提示4.11贝叶斯信息准则...
2020-06-02 01:06:06
345
原创 如何优化C语言的代码空间
1、减小不必要的判断语句;如:if(SetFlag==false){DoSomething();}else{DoOtherthing();}在这种条件判断语句中,常是根据某个事件的标志做某件事 如果事修改变量,可修改为如下(浪费了运行时间):DoOtherthing();if(SetFlag==false){DoSomething();}2、将不必要的全局变量替换为局部变量;3、将判断语句中用到的变量,能合并的条件变量合并;4、根据定义数据类型的数值大小选择不同的数据类
2020-05-25 00:57:01
3221
原创 python列表初始化出现的问题
1、引言笔者在仿真一程序时,定义了分别如下两个函数:函数一:def make_matrix(m,n, fill = 0.0): mat=[] for i in range(m): mat.append([fill]*n) return mat函数二:def make_matrix(m,n, fill = 0.0): mat=[[fill] *n]*m return mat发现一特别的现象,就是两个函数得到的数据格式完全一样,但是运行的结
2020-05-18 23:02:05
722
原创 模式识别(三)非线性分类器(待续)
模式识别(三)非线性分类器3.1引言3.2 异或问题3.3 两层感知器3.4 三层感知器3.5基于训练集准确分类的算法3.6反向传播算法3.7反向传播算法改进3.8代价函数选择3.9神经网络大小的选择3.10 仿真3.11 具有权值共享的网络3.12 线性分类器的推广3.13 线性分类法中l维的空间3.14多项式分类器3.15径向基函数网络3.16通用逼近3.17概率神经网络3.18支持向量机:非线性情况3.19超越SVM的范例3.20 决策树3.21 合并分类器3.22 合并分类器的增强法3.23类的不平
2020-05-18 01:21:17
481
原创 模式识别(二)线性分类器(待续)
模式识别(二)线性分类器2.1 引言2.2 线性判别函数和决策超平面2.3感知器算法2.4最小二乘法2.5 均方估计2.6逻辑识别2.7支持向量机2.1 引言2.2 线性判别函数和决策超平面2.3感知器算法2.4最小二乘法2.5 均方估计2.6逻辑识别2.7支持向量机...
2020-05-18 01:10:46
455
原创 模式识别(一)基于贝叶斯决策理论的分类器
1.1 引言1.2贝叶斯决策理论1.3判别函数和决策面1.4正态分布的贝叶斯分类1.5未知概率密度函数的估计1.6最近邻规则1.7贝叶斯网络
2020-05-18 00:47:24
1078
原创 智能控制(二)模糊控制(基于Python仿真)(待续)
2.1概述(1)建立在人工经验基础上;(2)定义:以模糊集合理论、模糊语言变量及模糊推理为一体的一类控制方法。(3)特点:a、不需要被控对象的数学模型;b、反应人类智慧;c、易于被人接受;d、构造容易;e、鲁棒性和适应性好。2.2 模糊集合2.2.1 概念:语言性描述经验性的数据信息,呈模糊性;(1)特征函数和隶属函数特征函数:完全布模糊的集合,元素只存在属于与不属于两种状态,常用特征函数表示。隶属函数:表示某个元素属于某个集合的程度。2.3 隶属函数2.4模糊关系及其运算
2020-05-18 00:41:23
1976
原创 粒子滤波的SIR算法总结
记法粒子用i=1,2,3...Ni=1,2,3...Ni=1,2,3...N来表示,其中N表示粒子总数。初始化给定状态分布 p(x)p(x)p(x)和初始值x0x_0x0,随机取消x0(i)−p(x0)x_0 ^{(i)} - p(x_0)x0(i)−p(x0)其中记号x−px-px−p是x是分布p的一个观察值,设置初始权值w0(i)=1Nw_0 ^{(i)} = \frac {1}{N}w0(i)=N1其中i=1,2,3...Ni=1,2,3...Ni=1,2,3...N循环每
2020-05-11 01:39:25
1824
原创 马尔可夫链学习笔记
3 马尔可夫链考虑由多个随机变量组成的系统,其演化可由一个随机过程描述,随机变量XnX_nXn在时刻n取值xnx_nxn称为系统在n时刻的状态。随机变量所有可能的值构成的空间称为系统的状态空间。如果随机过程{Xn,n=1,2,...}\lbrace X_n,n =1,2,... \rbrace{Xn,n=1,2,...}的构造使得Xn+1X_{n+1}Xn+1的条件概率分布仅依靠于XnX_nXn的值而与其他以前的值无关,称这个过程为马尔可夫链。更准确地说,我们有P(Xn+1=xn+1∣Xn=x
2020-05-11 01:08:32
1253
Python数据分析与挖掘实战.高清完整版PDF(加了详细的书签)
2017-11-01
Python数据分析与挖掘实战(带详细标签)
2017-10-21
智能控制.pdf 刘金琨
2017-07-30
[rar文件] STM32嵌入式系统开发实战指南-FreeRTOS与LwIP联合移植(高清电子书)第三部分
2015-10-01
STM32嵌入式系统开发实战指南 FreeRTOS与LwIP联合移植 [李志明等编著][机械工业出版社][2013.05][322页]
2015-10-01
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人