python插值(scipy.interpolate模块的griddata和Rbf)

本文介绍了Python中scipy.interpolate模块的二维插值方法,包括interp2d、Rbf和griddata。重点讨论了Rbf的优势,如支持非等距网格和高维插值,以及griddata的功能,如Delaunay三角插值和不同插值模式。同时,对比了两者在处理大量数据时的内存和CPU效率,并提供了插值应用实例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.插值scipy.interpolate

SciPy的interpolate模块提供了许多对数据进行插值运算的函数,范围涵盖简单的一维插值到复杂多维插值求解。

  1. 一维插值:当样本数据变化归因于一个独立的变量时;
  2. 多维插值:反之样本数据归因于多个独立变量时。

注:一维插值这里就不再讲述了,主要是对二维插值的一个总结。

2.interp2d()

from scipy.interpolate import interp2d
interp2d(x,y,z,kind='linear')

这里有几个注意事项:

  1. interp2d()中,输入的x,y,z先用ravel()被转成了一维数组
  2. func()的输入必须是一维的,输出是二维的(有点奇怪,感觉完成度不高)
  3. 插值的源数据必须是等距网格。不然的haul,运行不保存但结果不对。

3.Rbf()

Rbf的优点是,排列可以无序,可以不是等距的网格。

  1. 随机生成点,并计算函数值
  2. 插值(输入输出都是二维
from scipy.interpolate import Rbf
func = Rbf(x, y, z
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值