inception网络_深度卷积网络之Inception

30f36287a6168085780e0a9cc14490a7.png

源自 「吴恩达」 老师的深度学习课程。

对已学知识做个小结。

深度卷积网络之Inception

Outline

  • Classic networks:
    • LeNet-5
    • AlexNet
    • VGG
  • ResNet
  • Inception(GoogLeNet)

3 Inception(GoogLeNet)

  • 思想
    • Inception 网络不需要人为决定使用哪个过滤器或者是否需要池化,而是由网络 自行确定这些参数,你可以给网络添加这些参数的所有可能值,然后把这些输出连接起来,让网络自己学习它需要什么样的参数,采用哪些过滤器组合。
    • 更多内容参见inception网络模型[1]

3.1 1×1 卷积

  • 实现功能

    • 根据自己的意愿通过 1×1 卷积的简单操作来压缩或保持输入层中的通道数量,甚至是增加通道数量。
    • 注意:输入是28×28×192,过滤器大小得是5×5×192,(输入通道数与过滤器通道数匹配),假设过滤器个数为32,采用same卷积,则输出为28×28×32。
  • 应用

    • 1×1 卷积可以在网络中用于构建瓶颈层,降低计算成本。
  • 参见吴恩达深度学习[2]

「欢迎批评指正,一起学习进步!!!」

410ecad94d66e5fbee301b650e22e6fb.png

Reference

[1]

inception网络模型: https://www.cnblogs.com/dengshunge/p/10808191.html

[2]

吴恩达深度学习: https://www.coursera.org/learn/convolutional-neural-networks?specialization=deep-learning#syllabus

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>