源自 「吴恩达」 老师的深度学习课程。
对已学知识做个小结。
深度卷积网络之Inception
Outline
- Classic networks:
- LeNet-5
- AlexNet
- VGG
- ResNet
- Inception(GoogLeNet)
3 Inception(GoogLeNet)
- 思想
- Inception 网络不需要人为决定使用哪个过滤器或者是否需要池化,而是由网络 自行确定这些参数,你可以给网络添加这些参数的所有可能值,然后把这些输出连接起来,让网络自己学习它需要什么样的参数,采用哪些过滤器组合。
- 更多内容参见inception网络模型[1]
3.1 1×1 卷积
实现功能
- 根据自己的意愿通过 1×1 卷积的简单操作来压缩或保持输入层中的通道数量,甚至是增加通道数量。
- 注意:输入是28×28×192,过滤器大小得是5×5×192,(输入通道数与过滤器通道数匹配),假设过滤器个数为32,采用same卷积,则输出为28×28×32。
应用
- 1×1 卷积可以在网络中用于构建瓶颈层,降低计算成本。
参见吴恩达深度学习[2]
「欢迎批评指正,一起学习进步!!!」
Reference
[1]inception网络模型: https://www.cnblogs.com/dengshunge/p/10808191.html
[2]吴恩达深度学习: https://www.coursera.org/learn/convolutional-neural-networks?specialization=deep-learning#syllabus