求一个3*3矩阵两条对角线元素之和。_Barra系列(四):风险模型之异质风险

9026a5a09620f2ee9310632305078031.png

摘要

风险矩阵由共同风险矩阵和异质风险矩阵构成,对异质风险矩阵的调整步骤包括半衰期指数加权、newey-west调整、结构化模型调整,贝叶斯收缩,以及波动率偏差调整。这些风险调整意在消除时间序列的自相关性、解决残差收益数据缺失或者分布肥尾问题,以及调整估计值有偏等问题。


一、背景

本系列通过介绍Barra模型,测试Barra因子表现,窥探市场风格,通过构建多因子风险-收益模型形成一套有效的主动投资管理体系。

Barra模型作为一个风险管理体系,风险模块尤为重要。多因子模型的风险计算为通过计算K个因子的收益率协方差矩阵从而衡量N个股票的收益率协方差矩阵,这样可以大幅减小估计变量的数目(K<<N)。而该模块的重点在于如何调整风险矩阵,以使得风险估计更加精准。

本篇是Barra系列的第四篇,本篇着重介绍风险模块中的异质风险矩阵及其调整,与第三篇文章《Barra系列(三):风险模型之共同风险》中介绍的共同风险矩阵一起可生成最终的风险矩阵。

二、异质风险计算和调整

在本系列的上一篇文章《Barra系列(三):风险模型之共同风险》中,我们介绍了表征风险的个股协方差矩阵被切割为共同收益的协方差矩阵、个股异质收益的方差矩阵,以及个股对共同风险来源的敏感程度。共同风险的衡量依赖于对因子收益率协方差矩阵F的精准估计,对F进行了eigenfactor调整、波动率regime调整等风险调整步骤。

个股的异质风险是指个股不能被共同因子所解释部分的收益的波动率。回顾本系列文章《Barra系列(二):回归模型》中所介绍的回归模型,回归后所得的残差收益表示个股特有的收益,是不能被共同因子解释的部分。相应地,异质风险被认为是该股所特有的风险,与其他个股无关的,因此异质风险矩阵

是一个对角矩阵,对角线上的元素为回归模型所得残差收益的方差。

与共同风险的调整类似,仅用上式简单计算异质风险矩阵,意味着我们假设残差收益分布稳定,显然这不符合现实,个股残差收益的分布随时间发生变动。根据Barra中对偏差统计量bias的定义,实证分析也可以证明不经过调整的预测异质风险是有偏的,有必要经过一系列调整以得到更好的估计值。

I、半衰期指数加权法

指数加权法是一种非常常用的加权方法,通常应用在时间序列的数值平均中。它赋予更近期的数据更大的权重,赋予较远期的数据更小的权重,这样平均后的数值中包含了更多近期的信息。之所以叫做半衰期指数加权,是参考化学领域中元素半衰期的概念,过去half-life时间的信息量衰减到当前期信息量的一半,相应地,过去half-life时间的权重为当前期权重的一半。

在计算共同风险矩阵的步骤中,我们使用了该方法计算初始的因子协方差矩阵,在本文中,同样对残差收益时间序列应用指数加权法,计算结果为初始的异质风险矩阵。

II、Newey-West调整

除了运用指数加权的方法处理收益率时间序列之外,Barra模型中还使用了newey-west的调整方法以解决序列自相关的问题。Barra文档中并未详细说明newey-west调整的具体操作步骤,但是这种方法在若干个版本的Barra模型中均有应用,并且这是一个在计量领域经常用到的方法,足以见其重要性。

在本系列的上一篇文章中已经详细介绍了newey-west调整的过程,残差收益率方差矩阵的调整步骤和因子收益率协方差矩阵的调整步骤是一致的,此处不再展开阐述其原理,具体细节可回顾《Barra系列(三):风险模型之共同风险》。

值得注意的是,当进行因子收益率协方差矩阵的调整时,Barra文档中将协方差

拆分为相关系数矩阵
和标准差矩阵
,分别给予不同的参数,并分别进行了newey-west调整,之后再进行合并。

此处我们简单阐述相关系数矩阵

的newey-west调整。总体而言,其调整方法和协方差的调整方法是类似的,都是增加了具有时间间隔的两个序列的相关系数矩阵或者协方差矩阵。

同样假设所有因子都已经去均值化了,对于因子x和y的收益率的相关系数计算公式为:

其中

为半衰期指数加权权重。
的上标0代表着这是不考虑滞后阶数所计算得到的相关系数,而对于m滞后期的情况,调整的项为:

对所有因子按上面公式求得两两之间的相关系数和相关系数调整项,分别得到矩阵

,则经过newey-west调整的相关系数矩阵为:

III、结构化模型调整

从时间序列计算而来且经过newey-west调整之后的个股n的异质风险为

。对于历史时间序列长度不够的个股,或者交易量小收益波动大的个股,直接通过时间序列求波动率并不非常合适,Barra提出的解决办法是定义了一个blending系数
对这样的个股进行调整。如果股票数据量足够,残差收益肥尾情况不严重,则
,意味着不做调整,而对于其他需要调整的个股有

计算

,首先定义个股n的稳健标准差为:

其中

分别表示该股残差收益分布的25%、75%分位数,剔除超出
的收益之后再一次计算其标准差
,并在这个步骤中赋予等权重。接着可以通过比率
判断该股票是否需要进行blending系数的调整。从计算公式可以看出,
表示的是波动率相对于波动率稳健估计值的偏离程度,以偏离的比率形式表达。当
较大时,偏离程度远,数据状况差,有必要进行blending系数调整。

h为回溯时间长度。计算时间范围内个股

的占比,发现比例最小也可达90%,大部分股票都无需调整。本文以沪深300成分股为样本,残差收益缺失的情况相对不严重,但即使以全市场为研究样本,大部分股票也无需调整。

对于无需调整的个股,即

的股票,令上文所述的
取对数,对全部因子暴露度回归,且以市值开根号的倒数为权重,得到系数估计值b。

考虑进全部股票,结构化调整后的异质风险估计值

为:

其中

是用于进行结构化调整的略大于1的常数,它通过构建结构异质风险模型得到。结构化风险模型仅使用部分因子和残差收益作为回归模型的解释变量,在EUE中,这部分因子为Volatility、Liquidity、Momentum,加入残差收益绝对值的均值作为新的解释变量之后,模型的拟合程度显著提高。由该回归可以得到结构化的异质风险预测值
,计算
比值的均值,以市值开更号为权重,可以得到一个缩放量
。此处我们不再另外构建结构化风险模型,仅简单假设

最终经过结构化模型调整的异质风险估计值为:

IV、贝叶斯收缩

之所以进行贝叶斯收缩调整,主要是因为极高或极低的个股波动率可能会出现均值回归的情况,那么波动率就被高估或低估了。为了表现这种特征,我们依旧使用本系列前面几篇文章中介绍的偏差统计量bias来衡量预测波动率的偏差情况。下面对bias再一次做简单的介绍。

1、Bias统计量衡量偏差情况

定义时间序列上个股标准化收益率的标准差为偏差衡量标准,称为bias statistics(下简称为bias),个股标准化收益率为实际个股残差收益率除以预期波动率。

该bias的期望值为1,如果该值越接近于1,则偏差程度越小。若bias大于1,表示估计量被低估,若bias小于1,表示估计量被高估。

根据月初个股残差收益率波动率的大小分为10组,用该月的日度数据算出个股bias统计量,等权平均作为该组的bias统计量,在样本时间范围内求均值为每一组的最终bias统计量。如果真如我们猜想的那样,由于均值回归,较高的波动率是被高估的,较低的波动率是被低估的,那么我们可以从这些bias统计量上看出相应的规律。如下图中的灰线所示,波动率小的组的bias统计量大于1,表示预测风险被低估,而波动率大的组bias统计量小于1,表示预测风险被高估,尤其是波动率最小的前两个组偏差情况严重。

2666c8586757b3b9ad4ebd959f6c1431.png

2、贝叶斯收缩调整

为了解决这个问题,Barra使用了贝叶斯收缩的方法进行调整。其基本想法是,残差风险的绝对值

与异质风险成比例,这样对异质风险的预测就可以拆解为两部分:对残差收益的预测和将之进行缩放的所放量的预测。

具体而言,将原预测值向一个先验“收缩”,这个先验就是个股所属的市值范围内的全部个股的平均值。将全部个股按照市值大小分为若干组,个股所属于的这个组

之内的全部个股的波动率的市值加权平均值
,就是先验的异质风险。

从上面的公式形式可以理解,

表示的是在所属组
内,以先验
为真实值,异质风险的标准差。当风险估计值偏离先验越远,
越大,则
越大,赋予向先验收缩的权重越大。q是一个经验系数,也是我们需要根据实证结果确定的值。

将异质风险估计值经过贝叶斯收缩,同样的步骤计算bias统计量,如上图中的蓝线所示。调整之前的特征被较好的消除,bias统计量在10组内均趋近于1,估计相对准确。

V、Volatility Regime调整

在《Barra系列(三):风险模型之共同风险》中我们已经介绍了volatility regime调整,该步骤同样应用在异质风险的调整中,此处再一次对调整方法做出说明。

从时间截面上定义偏差统计量bias:时间截面上的个股标准化残差收益率(实际残差收益率除以预期波动率)的标准差,以市值

为权重。

Regime调整是为了调整预期波动率的偏差,通过衡量波动率偏差的大小进行相应的调整以消除偏差。这样的偏差衡量,或是说调整幅度为乘数

,进而令乘数
对个股残差收益的预测波动率进行相应调整。此处的
为半衰期指数加权权重。

计算不同时间截面的乘数

和时间截面波动率CSV(以百分比表示),画图对比两者的差异。CSV以和计算
时相同的半衰期指数权重加权平均。

ef1db7c3651b6b204a69859e97134190.png

乘数

与横截面波动率CSV之间的关系趋于同步,当横截面风险增大时,
也能迅速反应。

同时画出调整前和调整后的bias统计量滚动12个月均值,更直接对比regime调整的效果。从下图可以看出,在样本时间范围内,调整后的bias统计量比调整前的bias统计量更加靠近1,尤其在2015年至2017年期间,调整效果显著。总体而言,经过regime调整后的异质风险矩阵可以更加准确估计实际风险。

ebe5d9491ea8403e005102599b87df3f.png

三、总结

风险矩阵是Barra模型的核心,如何对风险矩阵进行调整以更加精准的刻画实际风险是风险建模步骤中的关键所在。作为马科维茨最优化模型中的一个输入变量,只有当风险估计准确时才能期望最优化模型能输出可控的结果。

参考文献

  • Jose Menchero, J., D. J. Orr, and J. Wang(2011). The Barra US Equity Model (USE4). Methodology Notes.
  • Yang Liu, Jose Menchero, J., D. J. Orr, and J. Wang(2011). The Barra US Equity Model (USE4). Empirical Notes.
  • Briner, B. G., R. C. Smith, and P. Ward (2009). The Barra Europe equity model (EUE3). Research Notes.
  • 方正证券 Barra模型进阶:多因子模型风险预测

原创不易,未经授权禁止转载。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值