python 建筑计算_用相关系数从真实建筑数据中挖掘影响建筑能耗的因素

本文探讨了使用Python中的Pearson相关系数从真实建筑数据中挖掘影响建筑能耗的因素,如空调用电、系统更新和周末开门状态等。这种方法相比传统的基于传热学的白箱模型,能更好地捕捉到复杂的行为影响。文中还提到了其他分析方法,如Chi-square测试、ANOVA和回归分析,并推荐了一个名为aibpd的Python模块,用于建筑性能分析设计。
摘要由CSDN通过智能技术生成

1c0affd1b913864ada5a9fa17b39fa4e.png

前言:传统的建筑能耗分析来源于建筑的物理模型,主要是基于传热学理论发展而来,这种方法也常被称为“白箱模型”。如果从传热角度出发,影响建筑能耗的参数更多地来源于气候条件、围护结构(屋顶、外墙、外窗和地面等)和空调系统。现实建筑的元素是无法用传热的模型来模拟的,例如人的行为。那从真实的建筑数据挖掘出影响建筑能耗的参数有哪些呢?

上次介绍的研究是使用决策树模型来挖掘影响建筑能耗的参数,事实上已有的研究应用了多种方法来进行实现这样的目的,主要有:

  • 相关系数(Pearson Correlation Coefficient),文献有Theodoridou et al. 2011等。
  • Chi-square测试,文献有Aksoezen et al. 2015等。
  • 方差分析(Analysis of variance,ANOVA),包括t-test等方法,文献有Petcharat et al. 2012等。
  • 回归分析的系数(variable coefficients in regression models),文献有决策树模型 (Yoon et al. 2018)

Pearson Correlation coefficient方法可以说是上面所有方法中最简单容易理解,也是在研究中被最多使用的方法。

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值