三角波的傅里叶变换对_《傅里叶光学(一)》 复数、特殊函数和冲激函数

本文是《傅里叶光学》系列的开篇,深入探讨复数概念、运算及其在特殊函数如阶跃、脉冲、三角函数中的应用,结合冲激函数的性质,阐述复数在傅里叶变换中的重要性。
摘要由CSDN通过智能技术生成

《傅里叶光学》系列的文章旨在记录、分享笔者的学习过程,作为这一系列的开篇文章,本文主要介绍了复数的概念和性质,常用的特殊函数以及冲激函数的性质。

复数

1. 复数的介绍

在许多应用中,用复数表示物理量比仅仅用实数表示方便得多。复数的概念来自于平方根、对数等函数的延续,这些函数传统的定义域为正数,有一定的局限性。而引入复数的概念后,这些函数的定义域就可以扩展到整个实数范围中。 定义一个虚数

定义一个任意的复数,包含实部和虚部

其中

都是实数

可以把复数

的实部和虚部看作正交的,并在二维平面(复平面)中画出来,如图所示:

d30ac5542023e960448fbf45cd4bd7f8.png
复数在复平面的表示

通过这种绘制方式,可以用正实数定义复数的大小、角度:

$

从平面三角函数可得:

利用欧拉公式:

将复数写成极

三角波脉冲函数傅里叶变换(Fourier Transform, FT)是一种将离散时间信号转换成频域表示的重要数学工具。对于一个简单的三角波信号,比如周期为\( T \)的单位三角波 \( u(t) = \frac{2}{T} \cdot |t| \), 其傅里叶变换可以通过直接应用傅里叶变换公式来求解: \[ U(f) = \mathcal{F}\{u(t)\} = \int_{-\infty}^{\infty} u(t) e^{-j2\pi ft} dt \] 由于单位三角波是非平滑的,在0到\( T \)区间上是一条直线,而在其他区间则是零,我们可以分段处理这个积分。 当\( -\frac{T}{2} < t < \frac{T}{2} \),即在一个完整的周期内,\( u(t) \) 的值为1,所以: \[ U(f) = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} |t| e^{-j2\pi ft} dt \] 对绝对值函数分解成两部分: \[ U(f) = \frac{4}{T} \left[ \int_{0}^{\frac{T}{2}} t e^{-j2\pi ft} dt - \int_{-\frac{T}{2}}^{0} (-t) e^{-j2\pi ft} dt \right] \] 这两个积分可以分别计算,因为它们是对称的。 计算每个积分并代入得到: \[ U(f) = \frac{4}{T} \left[ \left(\frac{-1}{j2\pi f} e^{-j2\pi f\frac{T}{2}} - \frac{j2\pi f}{(j2\pi f)^2+1}e^{-j2\pi f\frac{T}{2}}\right) - \left(-\frac{1}{j2\pi f} e^{j2\pi f\frac{T}{2}} + \frac{j2\pi f}{(j2\pi f)^2+1}e^{j2\pi f\frac{T}{2}}\right)\right] \] 简化后我们得到: \[ U(f) = \frac{8}{T} \cdot \frac{1}{(j2\pi f)^2+1} \] 这表明,单位三角波傅里叶变换是一个包含两个洛伦兹分布(Lorentzian functions)的组合,每个分布在频率轴上对应正负半周。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值