矩形函数的傅里叶变换_特殊函数笔记:旋转椭球波函数(3)

cae6eab3c11d15120ef96c9ecf2537b2.png

接着这个系列上一篇文章,之前我们已经给出来了旋转椭球波函数的具体表示,剩下只需要确定展开式系数就可以唯一确定波函数。鉴于这个展开式系数过于复杂,我们可能需要通过递推方式解决问题而不是使用极其复杂几乎无法计算的决定式,这就需要确定特征值,所以这里就接着上一节内容谈一下展开式系数与特征值的确定。

我们将上一篇文章中第一类角函数的定义式代入其满足的二阶微分方程,可以得到:

连带勒让德函数满足:

以及:

所以(1)可以写为:

我们令

项系数为零有:

这两个式子看着既复杂又难受,而(5)就是展开式系数的递推式,我们将其改写一下,不然太恶心了:

则(5)可以变成相对来说简洁一些的式子:

以上展开式系数比值确定,为了确定展开式系数,我们考虑

时角函数退化为连带勒让德函数:

于是有:

则展开式系数唯一确定。

这个时候我们还想得到特征值,只需要(7)这个齐次方程具有非零解即可,这个我们可以通过求解矩阵的本征值来确定,这个比较简单不详细写了,此外,也可以利用(5)确定的超越方程来给出特征值,仍然考虑(7)除以展开式系数变形:

,则上式化为:

然后

。令上式
,可以得到
关系,代入上式最后一项,得到
相关关系,重复迭代可以得到连分式:

然后(11)又可以重写为:

令上式

采用和上面类似的迭代可得另一个连分式:

令(12)(14)中

,联立两式可得关于特征值的超越方程:

这个方程可以利用数值解法近似求解。

最后再提一下展开式系数

的确定。采用和上面类似的方法有:

以及:

此外两个展开式系数满足如下关系:

其中

以上关于旋转椭球波函数的具体内容就介绍的差不多了。这个函数在电磁学和光学领域都有很高的应用价值,其中最重要的一点就是长椭球波函数是finite Fourier transform,即有限傅里叶变换的特征值。我们知道对于

中的函数可以进行傅里叶变换:

我们记

作为
中的子空间,它包含如下函数
,其傅里叶变换
时消失。
是一个正实数。则
中的函数可以在一个确定的矩形空间内表示为有限傅里叶变换:

中的函数被称为有带限的,而对于
中的函数
,我们总可以获得一个
中的函数
用如下关系与之对应:

则称

的带限有限形式。
作为一个算符,将函数变为对应的带限函数。对于后者,即可以进行有限傅里叶变换。长椭球函数之所以可以和这类变换相联系,主要是因为满足如下的积分关系:

长椭球函数的这个性质决定了其可作为有限傅里叶变换的特征值,以此为依据也可以求出光学中方形镜共焦腔自再现模满足的严格解。可以说这个关系是该类函数最重要的关系之一,大家务必要记忆准确。

以上就是关于旋转椭球波函数的一些简单介绍,大家在遇到问题时可以参照以上内容进行查阅。更多有关数学和物理方面的内容也欢迎阅读雪球物理其它文章,再见!

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值