凸优化理论学习笔记

凸集的定义(Convex Set)

A set ( S ) in a vector space (like R n \mathbb{R}^n Rn), the space of n-dimensional real vectors) is called convex if, for any two points within the set, every point on the straight line segment that connects these two points also lies within the set. Mathematically, this can be expressed as:
for any x , y ∈ S x,y\in S x,yS and any 0 ≤ λ ≤ 1 0\leq\lambda\leq1 0λ1,the point z = λ x + ( 1 − λ ) y z=\lambda x+(1-\lambda)y z=λx+(1λ)y must also be in S S S.

凸约束(Convex Constraints)

  • Convex Constraint: A constraint is convex if it defines a convex set. For inequality constraints g ( x ) ≤ 0 g(x) \leq 0 g(x)0, g g g must be a convex function. For equality constraints h ( x ) = 0 h(x) = 0 h(x)=0, h h h must be affine (i.e., h ( x ) = A x + b h(x) = Ax + b h(x)=Ax+b where A A A is a matrix and b b b is a vector).

凸函数(Convex Functions)

Determining if a function is convex is essential in various fields like optimization, economics, and machine learning. Convex functions have important properties that make optimization problems easier to solve because a local minimum of a convex function is also a global minimum. Here are several methods to determine if a function is convex:

1. Definition

A function f : R n → R f: \mathbb{R}^n \to \mathbb{R} f:RnR is convex on a convex set D D D if for all x , y ∈ D x, y \in D x,yD and for all λ \lambda λ such that 0 ≤ λ ≤ 1 0 \leq \lambda \leq 1 0λ1, the following inequality holds:
f ( λ x + ( 1 − λ ) y ) ≤ λ f ( x ) + ( 1 − λ ) f ( y ) f(\lambda x + (1-\lambda) y) \leq \lambda f(x) + (1-\lambda) f(y) f(λx+(1λ)y)λf(x)+(1λ)f(y)
This definition states that the line segment connecting any two points on the graph of the function lies above or on the graph itself.

2. First Derivative Test (for functions of one variable)

A function f f f of one variable is convex on an interval if its first derivative f ′ f' f is monotonically non-decreasing on that interval. This means as x x x increases, f ′ ( x ) f'(x) f(x) does not decrease.

3. Second Derivative Test

A function f f f is convex on an interval if its second derivative f ′ ′ ( x ) f''(x) f′′(x) is non-negative for all x x x in that interval. This is a straightforward test because it only involves checking the sign of the second derivative:
f ′ ′ ( x ) ≥ 0 for all  x ∈ D f''(x) \geq 0 \quad \text{for all } x \in D f′′(x)0for all xD

4. Hessian Matrix (for multivariable functions)

For functions of several variables, f : R n → R f: \mathbb{R}^n \to \mathbb{R} f:RnR, the function is convex on a convex set if its Hessian matrix H f ( x ) H_f(x) Hf(x) is positive semidefinite(半定) for all x x x in the domain of f f f. The Hessian matrix of f f f at x x x is given by:
H f ( x ) = [ ∂ 2 f ∂ x 1 2 ∂ 2 f ∂ x 1 ∂ x 2 ⋯ ∂ 2 f ∂ x 1 ∂ x n ∂ 2 f ∂ x 2 ∂ x 1 ∂ 2 f ∂ x 2 2 ⋯ ∂ 2 f ∂ x 2 ∂ x n ⋮ ⋮ ⋱ ⋮ ∂ 2 f ∂ x n ∂ x 1 ∂ 2 f ∂ x n ∂ x 2 ⋯ ∂ 2 f ∂ x n 2 ] H_f(x) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix} Hf(x)= x122fx2x12fxnx12fx1x22fx222fxnx22fx1xn2fx2xn2fxn22f
A matrix is positive semidefinite if all its eigenvalues(特征值) are non-negative.

凸近似(Convex Approximation)

Convex approximation involves using a convex function to approximate a non-convex function.

1.Linearization (First-Order Taylor Expansion)

The simplest form of convex approximation is to perform a first-order Taylor expansion around a point x 0 x_0 x0:
f ( x ) ≈ f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) f(x) \approx f(x_0) + f'(x_0) (x - x_0) f(x)f(x0)+f(x0)(xx0)
Here, f ′ ( x 0 ) f'(x_0) f(x0) is the derivative of the function at x 0 x_0 x0. This linear approximation is usually only valid within a very small neighborhood of x 0 x_0 x0.

2. Second-Order Taylor Expansion

If the second-order derivative (Hessian matrix) is semi-definite at some condition, a second-order Taylor expansion can be used:
f ( x ) ≈ f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + 1 2 ( x − x 0 ) T H ( x 0 ) ( x − x 0 ) f(x) \approx f(x_0) + f'(x_0) (x - x_0) + \frac{1}{2} (x - x_0)^T H(x_0) (x - x_0) f(x)f(x0)+f(x0)(xx0)+21(xx0)TH(x0)(xx0)
Where H ( x 0 ) H(x_0) H(x0) is the Hessian matrix at x 0 x_0 x0. If H ( x 0 ) H(x_0) H(x0) is semi-definite, this approximation is convex.

3. Substitution and Relaxation

Sometimes, convex approximations can be created by substituting non-convex expressions or relaxing constraints. For instance, the absolute value function can be approximated by the square of the absolute value.

  • 23
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值