忍者必须死3 通关 服务器维护,《忍者必须死3》11月5日停服维护公告

该楼层疑似违规已被系统折叠 隐藏此楼查看此楼

二、3v3战场调整优化

※战场效果调整:

死穴效果调整为:受伤后给与敌方血量最少的一名玩家添加回血效果(增加触发CD30秒)。

混乱效果调整为:随机分配双方装备的前两张卡牌。

暴躁效果调整为boss血量降低到50%以下时获得永久buff:BOSS攻击力提升100%,BOSS受到伤害增加50%。

优惠:卡牌描述修正为“卡牌价格降低20%,购买完所有卡牌后获得一张武器秘籍”。

魑魅:由每30秒生成一只魑魅调整为每25秒生成一只魑魅,攻击力降低由5%调整为10%

※被动卡牌调整:

1.宝藏(1级技能):由每过75秒获得一张武器秘籍调整为每过65秒获得一个武器技能,获得的武器技能由SSR技能调整为SR技能。

2.财富(1级技能):由率先获得1000金鱼币,奖励队友135鱼币调整为率先获得1000金鱼币,奖励队友194-200鱼币。

3.魁首(1级技能):由率先到达金鱼币商店,奖励135金鱼币调整为率先到达金鱼币商店,奖励194金鱼币。

4.冰语(1级技能):由生命值低于30%时获得一个冰晶护身,CD75秒调整为生命值低于30%时获得一个冰晶护身,CD25秒。

5.刀客(1级技能):由武器CD提升20%,伤害提升50%调整为武器CD提升50%,伤害提升67%。

6.金鱼祝福(1级技能):由每过10秒,获得35金鱼币调整为每过30秒,获得100金鱼币。

7.元素(1级技能):由拾取飞镖球时6%概率获得元素球调整为由拾取飞镖球时8%概率获得元素球。

8.王者祝福(1级技能):由每10秒提升37攻击力调整为每20秒提升2.5%攻击力。

※BOSS调整:

1.鸦之巢(噩梦难度):BOSS专业前台(所有模式)编排优化

2.大名府(无双难度):BOSS赤晶红龙编排优化

3.风之林(无双难度):BOSS丹青妙手编排优化

4.大名府(天元难度):BOSS赤青双龙编排优化

5.风之林(天元难度):BOSS出神入化编排优化

6.竹叶寨(天元难度):BOSS机械军团编排优化

※地图调整:

1.风之林(天元,无双难度):地图编排优化

2.雪之国(天元,无双难度):地图编排优化

3.大名府(天元,无双难度):地图编排优化

※其他调整:

1.3v3战场中到达第一个商店的忍者按名次获取的金鱼币由200/100/50调整为150/100/50;到达第二个商店的忍者按名次获取的金鱼币由100/50/30调整为50/30/20。

2.高级强力卡牌图标调整。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值