二维非稳态导热微分方程_线性代数25——微分方程和exp(At)

微分方程指含有未知函数及其导数的关系式,解微分方程就是找出未知函数。未知函数是一元函数的,叫常微分方程;未知函数是多元函数的,叫做偏微分方程。常微分方程有时也简称方程。微分方程是一门复杂的学科,对于常微分方程来说,可以使用特征值和特征向量的知识求解。相关前置知识:

泰勒公式在0点展开的原因:多项式函数能够拟合非线性问题原理
    求行列式:行列式和代数余子式
    特征值和特征向量:特征值和特征向量
    矩阵对角化:矩阵的对角化和方幂

常微分方程的一般解法


根据概念构造一个常微分方程:

f69fc4847964a33d3f6315dd9aa2a0ac.png

  目标是求得原函数u=u(t)的具体形式。通过积分求解:

a851c0cf2e7cc455b2a3dda37f143c7e.png

  这就是最终答案的通解,C是任意常数。实际上这种解法就是利用了不定积分的知识:

89be4dbaf3fee7649b5f97469fb062ca.png


  如果

,可以使用分离变量法的求解方式:

9ffdaaea6121777ec461e3afcdee0ad9.png

  也就是说,当函数的导数是函数本身的时候,这个函数就是型如

的函数,由于
是任意常数,所以经常用C代替A,写成
的形式。

  同理,对于
,微分方程的解是
。当t=0时:

1c0b17be27f5d6ff7b11b4b208050b6a.png


  由于C是任意常数,因此可以取C=u(0),得到

,这样做可以去掉常数C。在实际问题中,u可以表示关于时间t的函数,对于时间来说,通常可以把t=0看作初始条件。

常微分方程与矩阵

 现在将常微分方程扩展为常微分方程组,

,初始条件是t=0,初始值是
u(0)=(1,0),求解微分方程:

e1a806cfcda9575cbb9a1c8d0fba1cb4.png

  可以把微分方程组写成向量矩阵的形式:

61ca970ec2eaa308fddb999050d85190.png

  相当于将常微分方程中转换成了

的线性形式。


常微分方程的线性代数解法

对于

来说,
之间存在耦合(没有耦合就没必要写成方程组了&#x
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值