优秀logo设计解析_优秀Logo设计!数学美的运用

文/代福平 标志数学美的设计方法可以概括为4个方面:

9f765675253efe913443e89cd58931fd.png

①数形结合

②消除冗形以求简洁

③调整秩序以求和谐

④探索变异以求独特

33801dd5b91fffd51a253fd945de4196.png

标志数学美的设计方法,从根本上说是在标志形态中实现目的性与规律性相统一的方法。

b367a40432dab458a6092e7ae70fdb32.png

标志是一种传播信息的视觉手段,而传播意味着在时间上的延续和在空间中的扩展,这就要求标志的形式不能受一时一地的局限,而应追求一种超越时间和空间的独立生命力,以及一种普遍性的美感,数学美恰恰符合这样的要求。

47a01788e9a575865452a25f91942699.png
839225780300b064c4ce3b9db5d9f519.gif

数学规律是数学美图形的内在支撑,标志中的形态与形态进行组合时,数量关系对组合的美感影响极大。比例关系,比例关系中最重要的是整数等分问题,使组成图形的元素遵守等分的"骨骼"制约,这样的标志其严谨性是无可挑剔的,是一种完美的整合关系。

8fb4f2cf644ac046b449bdf815497f6b.png

需要特别提出的是,标志设计中为了表达规范标准,同时方便放大,在制图时也用等分网格。在标志设计中,有时需要处理形态大小的序列,这时就涉及到数列问题,等比数列和等差数列在标志中常常用到。

aee7190d3b659a97fb83f9c72407049b.png

标志设计中经常会遇到直线与弧线、弧线与弧线相连接的问题,一般来说,连接处都要求流畅光滑,那么连接点必须是可导的。为此直线和弧线必须采取相切的关系,弧线和弧线必须采取相接的关系,否则就会出现尖突点,影响标志的和谐。

acafc2912333238ab65bc62ed77ad868.png
6c241c7702008999ea91ad29d699a2b5.gif

标志数学美的第一个特征是简洁。要不断地去除冗余的形 ,追求形的本质联系,这本质联系就是数学关系。标志的简洁性不是形态之少,而是冗形之无。没有冗形,形态再多也是简洁,存在冗形 ,形态再少也是繁杂。冗形的消除方法有2种:删除与转换。

5025e2aaa3056413c0ef3b32bd71fd67.png

①删除就是直接将冗形去掉,使图形获得最简洁纯粹的数学关系 ,达到完整。例如:三菱标志的演化是删除冗形的一个典型例子,事实上它也是整个标志史的浓缩。在日常所见的标志,特别是所谓几何形标志中,经常会看到无意义的边框线、装饰性的圆点、人为分割的琐碎的面,诸如此类都是冗形。

173cdd0ccdc2f83446897ab5d26d477f.png

②转换是将单独的、明显的冗形可以删除,共生的隐蔽的冗形则要靠转换,使之成为构成标志整体的有效形态。标志的正空间形态与负空间形态互相包含、互相转化,当它们内在地、稳定地联系在一起,任何的增减都会破坏这种稳定性时,冗形就会发生转换。

5c7ec07d7309c531ba7541351038b3b7.png
5ff825211f3bde03bebe54cdee7a5008.gif

①对称的数学秩序。标志形态只要达到几何学上的对称,就呈现出和谐美,对称包括点对称、轴对称等,对称形态的标志最为常见。

1b69f653ed88c0057d6448756d365667.png

在通过对称以取得和谐方面,有一种现象也十分常见,那就是保持对称的规律下适度制造局部的不对称,严格地讲这是对对称所形成和谐的破坏,只是由于它控制在较小的范围内,并且没有产生冗形,给人的整体感觉仍然是一种对称和谐美,而且还增加了因局部偏离对称而产生的张力。

8d665dd970e4a433769983c4661a8405.png

②重复的数学秩序。重复是将组成标志的单元形态按一定秩序反复出现,秩序是靠"骨骼"来实现的,而"骨骼"的设定必须有精确的数学特征。重复所形成的和谐美在标志中极为常见,重复所依循的数学"骨骼"千变万化而又严谨有序,造成了标志形式的既简洁又丰富。

a2b2bf126aaee6b0858148eb074e9450.png

重复的形式一般有横向重复、纵向重复、倾斜重复、跳跃重复、旋转重复等。

3ab3456be1e3fb93ab55e95877d94c7d.png

③渐变的数学秩序。渐变是一种特殊的重复,它是有规律的变化着的单元形的反复出现,渐变同样依靠严格的数学规律。渐变往往使标志产生光感、动感,同时也给人以节奏和韵律感。渐变的"骨骼"方式同重复相类似,也有横向渐变、纵向渐变、倾斜渐变、旋转渐变、综合渐变等。

0f8338daa97df7d3997ed0ebc682fc00.png
f96597f071ed1f59ff95be160a2cb897.gif

标志数学美的独特性并不是一般意义上的与众不同,而是建立在数学奇异美基础上的独特性。数学奇异美对标志形式独特性具有重要的价值,常见的表现形式有视觉幻影、投影的利用、拓扑学中的打结形态、莫比乌斯带等等。

413db7181869c0a8c4a91f7f6ee49572.png

例如:莫比乌斯带,1858年德国天文学家莫比乌斯发现,把一条长的矩形纸带扭转 180°后,再把两端粘起来 ,就成了一个仅有一个侧面的曲面 ,人们称之为“莫比乌斯带 ”。莫比乌斯带简单却又深刻,在标志设计方面,利用莫比乌斯带的原理可以产生奇特的标志。比如瑞士某保险的标志就是利用这一原理的变形后,得到视觉形态。

51c5c7a11e0820f665bd078c401a635b.png

标志形式的力量、自身逻辑、独立生命,它们从哪里来?标志数学美理论从合乎数学规律的角度提出,它们来自数学的简洁、谐、奇异。

a5e28f86d0aa5199900da122e2649b4a.png
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值