我正在开展一个硬币识别项目.
我遇到的第一件事就是从图像中提取正确的硬币,即使是非常简单的图像也是如此.
硬币检测有很多好的工作方法,但我认为所有这些都需要在申请后进行人工检查.我测试了其中两个:
cv2.HoughCircles和阈值与findig countours之后.
这里有一些成功的处理示例:
cv2.HoughCircles,效果很好
cv2.HoughCircles,结果不好
但是对于第二个图像,它可以很好地解决threshloding并在它之后找到countours:
这样的事情:
gray = cv2.GaussianBlur(gray, (15, 15), 0)
#gray = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY_INV, 11, 1)
(_,gray) = cv2.threshold(gray,0,255,cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)
contours, hierarchy = cv2.findContours(gray, cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
for i,cnt in enumerate(contours):
ellipse = cv2.fitEllipse(cnt)
print ellipse,type(ellipse)
cv2.ellipse(color_img, el