python硬币识别_python – OpenCV硬币检测和自动结果检查

本文介绍了一个Python硬币识别项目,探讨了使用cv2.HoughCircles和阈值找寻轮廓的方法,以及如何应对不同图像的挑战。作者提出需要一个算法来尝试不同的分割方法并选择最佳结果,并分享了成功应用SimpleBlobDetector进行检测的经验。
摘要由CSDN通过智能技术生成

我正在开展一个硬币识别项目.

我遇到的第一件事就是从图像中提取正确的硬币,即使是非常简单的图像也是如此.

硬币检测有很多好的工作方法,但我认为所有这些都需要在申请后进行人工检查.我测试了其中两个:

cv2.HoughCircles和阈值与findig countours之后.

这里有一些成功的处理示例:

cv2.HoughCircles,效果很好

cv2.HoughCircles,结果不好

但是对于第二个图像,它可以很好地解决threshloding并在它之后找到countours:

这样的事情:

gray = cv2.GaussianBlur(gray, (15, 15), 0)

#gray = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY_INV, 11, 1)

(_,gray) = cv2.threshold(gray,0,255,cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)

contours, hierarchy = cv2.findContours(gray, cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)

for i,cnt in enumerate(contours):

ellipse = cv2.fitEllipse(cnt)

print ellipse,type(ellipse)

cv2.ellipse(color_img, el

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值