高光谱图像重构评价指标及其Python实现
高光谱图像重构的评价指标通常有三项。其中部分指标从普通图像变化而来,部分指标只有高光谱图像独有。本文拟从以下两个角度介绍高光谱图像评价指标,并列出基于Python语言的skimage库的对应实现方法。
1)从普通图像重构评价指标到高光谱图像重构评价指标
2)从普通图像重构评价指标代码到高光谱图像重构评价指标代码
一、MSE
MSE计算两组数据的均方误差,是最常用的评价相似度的准则,包括但不限于图像、信号。
Skimage库中对应的函数原型:
skimage.measure.compare_mse(im1, im2)
Parameters:
im1, im2 : ndarray
Image. Any dimensionality.
Returns:
mse : float
The mean-squared error (MSE) metric.
想要测度其他距离,参考compare_nrmse函数
二、PSNR与MPSNR
1. PSNR
PSNR全称是Compute the peak signal to noise ratio。用于计算原始图像与重构图像之间的峰值信噪比。在图像超分辨率等任务中尤为常用,如同错误率之于分类任务,PSNR是图像重构任务事实上的基准评价准则。
skimage.measure.compare_psnr(im_true, im_test, data_range=None, dynamic_range =None )
Parameters:
im_true : ndarray
Ground-truth image.
im_test : ndarray
Test image.
data_range : int
The data range of the input image (distance between minimum and maximum possible values). By default, this is estimated from the image data-type.
Returns:
psnr : float
The PSNR metric.
2. MPSNR
MPSNR用于计算两幅高光谱图像之间的平均峰值信噪比。MPSNR计算方法很简单,只需要分别计算不同波段的PSNR,取均值就可以了。
1 defmpsnr(x_true, x_pred):2 """
3
4 :param x_true: 高光谱图像:格式:(H, W, C)5 :param x_pred: 高光谱图像:格式:(H, W, C)6 :return: 计算原始高光谱数据与重构高光谱数据的均方误差7 References8 ----------9 .. [1] https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio10 """
11 n_bands = x_true.shape[2]12 p = [compare_psnr(x_true[:, :, k], x_pred[:, :, k], dynamic_range=np.max(x_true[:, :, k])) for k inrange(n_bands)]13 return np.mean(p)
三、SSIM与MSSIM
1. SSIM用于计算两幅图像之间的平均结构相似度。
skimage.measure.compare_ssim(X, Y, win_size=None, gradient=False, data_range=None, multichannel=False, gaussian_weights=False, full=False, dynamic_range=None, **kwargs)
Parameters:
X, Y : ndarray
Image. Any dimensionality.
win_size : int or None
The side-length of the sliding window used in comparison. Must be an odd value. If gaussian_weights is True, this is ignored and the window size will depend on sigma.
gradient : bool, optional
If True, also return the gradient.
data_range : int, optional
The data range of the input image (distance between minimum and maximum possible values). By default, this is estimated from the image data-type.
multichannel : bool, optional
If True, treat the last dimension of the array as channels. Similarity calculations are done independently for each channel then averaged.
gaussian_weights : bool, optional
If True, each patch has its mean and variance spatially weighted by a normalized Gaussian kernel of width sigma=1.5.
full : bool, optional
If True, return the full structural similarity image instead of the mean value.
Returns:
mssim : float
The mean structural similarity over the image.
grad : ndarray
The gradient of the structural similarity index between X and Y [R327]. This is only returned if gradient is set to True.
S : ndarray
The full SSIM image. This is only returned if full is set to True.
Other Parameters:
use_sample_covariance : bool
if True, normalize covariances by N-1 rather than, N where N is the number of pixels within the sliding window.
K1 : float
algorithm parameter, K1 (small constant, see [R326])
K2 : float
algorithm parameter, K2 (small constant, see [R326])
sigma : float
sigma for the Gaussian when gaussian_weights is True.
2. MSSIM
MSSIM用于计算两幅高光谱图像之间的平均结构相似度。MSSIM计算方法很简单,只需要分别计算不同波段的SSIM指数,取均值就可以了。
1 defmssim(x_true,x_pred):2 """
3 :param x_true: 高光谱图像:格式:(H, W, C)4 :param x_pred: 高光谱图像:格式:(H, W, C)5 :return: 计算原始高光谱数据与重构高光谱数据的结构相似度6 """
7 SSIM = compare_ssim(X=x_true, Y=x_pred, multichannel=True)8 return SSIM
四、SAM
SAM这个概念只存在于多/高光谱图像,普通图像没有这个概念。SAM又称光谱角相似度,用于度量原始高光谱数据与重构高光谱数据之间的光谱相似度。
1 defsam(x_true, x_pred):2 """
3 :param x_true: 高光谱图像:格式:(H, W, C)4 :param x_pred: 高光谱图像:格式:(H, W, C)5 :return: 计算原始高光谱数据与重构高光谱数据的光谱角相似度6 """
7 assert x_true.ndim ==3 and x_true.shape ==x_pred.shape8 sam_rad = np.zeros(x_pred.shape[0, 1])9 for x inrange(x_true.shape[0]):10 for y in range(x_true.shape[1]):11 tmp_pred =x_pred[x, y].ravel()12 tmp_true =x_true[x, y].ravel()13 sam_rad[x, y] = np.arccos(tmp_pred / (norm(tmp_pred) * tmp_true /norm(tmp_true)))14 sam_deg = sam_rad.mean() * 180 /np.pi15 return sam_deg
五、相关资料
0. 文中用到的代码
1. 文中提到的函数的文档
2. PSNR维基百科链接
3. SSIM参考文献
[R326] Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13, 600-612. https://ece.uwaterloo.ca/~z70wang/publications/ssim.pdf , DOI:10.1.1.11.2477
[R327] Avanaki, A. N. (2009). Exact global histogram specification optimized for structural similarity. Optical Review, 16, 613-621. http://arxiv.org/abs/0901.0065 , DOI:10.1007/s10043-009-0119-z