向量正交 与 函数正交

目录

1 向量内积和外积

1.1 向量内积(点乘)

1.2 向量外积(差乘)

2 向量的正交

3 函数的正交

4 函数正交的意义


1 向量内积和外积

1.1 向量内积(点乘)

假设  a = [a1,a2,...,an],  b = [b1,b2,...,bn];

则a与b的内积为  a·b = a1·b1+a2·b2+...+a3·b3 = |a||b|cosθ;

点成的结果是  标量

几何意义:b向量在a向量方向上的投影

作用:用来证明两个向量是否正交。则表示,θ为90°(的奇数倍),即表示两个非零向量垂直(即正交)。

1.2 向量外积(差乘)

假设  a = [a1,a2,...,an],  b = [b1,b2,...,bn];对应单位向量是  [e1,e2,...,en];

则a与b的外积  

    大小:  |a ×b| = |a|·|b|·sin<a,b>.

    方向:法向量。 根据右手法则确定,就是手掌立在ab所在平面的向量a上,掌心由a转向b的过程中,大拇指的方向是外积方向。(∴方向与乘积的顺序有关

               

点成的结果是  向量

几何意义:大小是以a、b为相邻边的平行四边形围成的面积;方向是法向量。

作用:用来证明两个向量是否平行。

 

2 向量的正交

正交 线性代数的概念,是垂直这一直观概念的推广。作为一个形容词,只有在一个确定的内积空间中才有意义。若内积空间中两向量内积为0,则称它们是正交的。如果能够定义向量间的夹角,则正交可以直观的理解为垂直。物理中:运动的独立性,也可以用正交来解释。[百度百科:正交]

向量正交

  1. 1、从几何上来理解

    如果是零向量,它与任何向量正交。如果非零向量之间正交,则它们之间是垂直的,可以简单理解为向量之间的夹角为90°,或者其中一个向量在另一个向量上的投影长度为0(变成一个点)

  2. 2、从代数上来理解

    所有同维向量构成一个向量空间,正交的向量之间,满足内积为0。简单来说,就是向量各分量之间相乘后相加,其计算结果为0

向量正交的用途:

对于不含零的正交向量组,我们可以将其扩充为一组正交基,这样向量空间中的所有向量,都可以用这组基来表示。更为特殊地,正交基,单位化后,得到标准正交基,然后向量空间中的所有向量都可以写成比较简单的坐标形式。

 

3 函数的正交

向量的内积

a = [a1,a2,...,an],  b = [b1,b2,...,bn];则a与b的内积为  a·b = a1·b1+a2·b2+...+a3·b3 

相当于在基向量[e1,e2,...,en] 上求a与b乘积的求和。

函数的内积  

(1)对应于函数 f(x) 的 a = (f(0), f(1), f(2), f(3), f(4), f(5), ..., f(N));

(2)对应于函数 g(x) 的 b = (g(0), g(1), g(2), g(3), g(4), g(5), ..., g(N));

*两者可以看作是以空间中的Δx为基的两组向量,任意两段Δx之间相互独立(无交叠),因此可看作一组正交基;

函数内积相当于对函数乘积进行积分:      \int f(x)g(x)dx=\sum f(x_{i})g(x^{_{i}})\Delta x

*因此,积分上下限就相当于两个向量的长度。

所以函数在区间内乘积积分为0,可当作其在此区间内正交。

 

4 函数正交的意义

傅里叶变换中,

积分号内部本质上就是在积分区间上,用复数项对函数f(t)提取。

快速傅里叶变换中也用到了相关概念,请参考:https://zhuanlan.zhihu.com/p/40505277

参考:

https://www.cnblogs.com/gxcdream/p/7597865.html

https://blog.csdn.net/eloudy/article/details/56489400

http://www.360doc.com/content/16/1231/10/5399905_619057239.shtml

  • 4
    点赞
  • 0
    评论
  • 27
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 精致技术 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值